Experimental Investigation on Evaporation Rate for Enhancing Evaporative Cooling of Pervious Pavement Containing Recycled Rubber

Author(s):  
Khaled Seifeddine ◽  
Evelyne Toussaint ◽  
Sofiane Amziane

Traditional impermeable pavements such as asphalt have dark surfaces and high thermal inertia. During hot weather, they tend to absorb and store solar radiation, which promotes the development of urban heat islands (UHI). Furthermore, permeable pavements are effective in mitigating the urban heat island effect via evaporative cooling. There are many studies in the literature on the hydraulic and mechanical characteristics of permeable pavements, but a few studies focus on the impact of evaporative cooling of these pavements. In this study, 3 types of permeable pavements based on pozzolan, recycled rubber and polyurethane resin were studied during 3 hot days. The objective was to quantify the cooling effect in these innovative permeable pavements compared to a traditional impermeable asphalt pavement. The results of this experiment show that the cooling effect in the new types of draining pavements can last up to two days in the weather conditions of this experiment compared to the traditional asphalt pavement. The evaporation rate and surface temperature of permeable pavements vary in opposite directions. In addition, evaporation in pervious pavements is controlled by the availability of water near the surface. This study is a preliminary step in the design of pavements that contribute to the valorization of rubber waste, to the stormwater management and to the reduction of the effects of urban heat islands during heat waves.

2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2309-2324
Author(s):  
Marija Lalosevic ◽  
Mirko Komatina ◽  
Marko Milos ◽  
Nedzad Rudonja

The effect of extensive and intensive green roofs on improving outdoor microclimate parameters of urban built environments is currently a worldwide focus of research. Due to the lack of reliable data for Belgrade, the impact of extensive and intensive green roof systems on mitigating the effects of urban heat islands and improving microclimatic conditions by utilizing high albedo materials in public spaces were studied. Research was conducted on four chosen urban units within existing residential blocks in the city that were representative of typical urban planning and construction within the Belgrade metropolitan area. Five different models (baseline model and four potential models of retrofitting) were designed, for which the temperature changes at pedestrian and roof levels at 07:00, 13:00, 19:00 h, on a typical summer day, and at 01:00 h, the following night in Belgrade were investigated. The ENVI-met software was used to model the simulations. The results of numerical modeling showed that utilizing green roofs in the Belgrade climatic area could reduce air temperatures in the surroundings up to 0.47, 1.51, 1.60, 1.80 ?C at pedestrian level and up to 0.53, 1.45, 0.90, 1.45 ?C at roof level for four potential retrofitting strategies, respectively.


2013 ◽  
Vol 52 (9) ◽  
pp. 2051-2064 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid

AbstractCities are well known to be hotter than the rural areas that surround them; this phenomenon is called the urban heat island. Heat waves are excessively hot periods during which the air temperatures of both urban and rural areas increase significantly. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses indicates synergies between urban heat islands and heat waves. That is, not only do heat waves increase the ambient temperatures, but they also intensify the difference between urban and rural temperatures. As a result, the added heat stress in cities will be even higher than the sum of the background urban heat island effect and the heat wave effect. Results presented here also attribute this added impact of heat waves on urban areas to the lack of surface moisture in urban areas and the low wind speed associated with heat waves. Given that heat waves are projected to become more frequent and that urban populations are substantially increasing, these findings underline the serious heat-related health risks facing urban residents in the twenty-first century. Adaptation and mitigation strategies will require joint efforts to reinvent the city, allowing for more green spaces and lesser disruption of the natural water cycle.


2017 ◽  
Vol 9 (7) ◽  
pp. 672 ◽  
Author(s):  
Chao Fan ◽  
Soe Myint ◽  
Shai Kaplan ◽  
Ariane Middel ◽  
Baojuan Zheng ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 2637 ◽  
Author(s):  
Bing Li ◽  
Zhifeng Liu ◽  
Ying Nan ◽  
Shengnan Li ◽  
Yanmin Yang

Quantification of the spatial pattern of urban heat island intensities across the transnational urban agglomeration of the Tumen River is important for the promotion of sustainable regional development. This study employed Landsat images and MODIS LST data obtained in 2016 to determine the intensity of urban heat islands in this region, enabling direct comparison of data from the sub-regions of China, Democratic People’s Republic of Korea (DPRK), and Russia. The average urban heat island intensity for the region was found to be 1.0 °C, with the highest intensity of 3.0 °C occurring during the summer time. The intensity of urban heat islands on the Chinese side was higher than on the other two sides, with city size, socio-economic development levels and vegetation coverage significantly affect their intensity. Urban heat island effects in Chinese cities in the region contribute increases in maximum summer temperatures and the number of high-temperature days that pose a threat to the health of their residents. The factors that influence urban heat island intensities in these cities and the impacts of urban heat island effects on the quality of life and health of residents are discussed. Therefore, it is desirable to reduce the impact of urban heat island effects on cities in the region by increasing the area of green spaces they contain, as well as controlling their size and population.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012065
Author(s):  
Magalie Técher ◽  
Hassan Ait Haddou ◽  
Rahim Aguejdad

Abstract With the increase of Urban Heat Islands (UHI) and the effects of global warming, cities will face challenges in anticipating these phenomena. However, the complexity of urban development within the framework of urban planning policies, makes difficult for urban decision-makers to anticipate the Urban Heat Islands within their territory. In this paper, we propose a methodology to assess the impact of urban planning policies on Urban Heat Island. Thanks to a coupling of 2D urban growth model, 3D constructability model and urban microclimate simulation, this tool will make it possible to visualize the impact of urban planning decisions on urban form and on Urban Heat Island.


Author(s):  
Chi Chen ◽  
Dan Li ◽  
Trevor F. Keenan

Abstract Satellite observations show that the surface urban heat island intensity (SUHII) has been increasing over the last two decades. This is often accompanied by an increased urban-rural contrast of vegetation greenness. However, the contribution of uneven vegetation trends in urban and rural areas to the trend of SUHII is unclear, due to the confounding effects of climate change and changes in man-made amenities and anthropogenic heat sources. Here we use a data-model fusion approach to quantify such contributions during the peak growing season. We show that the LAIdif (the urban-rural difference of leaf area index) is increasing (P<0.05) in 189 of the selected 228 global megacities. The increasing trend of LAIdif from 2000 to 2019 accounts for about one quarter of the trend in satellite-derived SUHII, and the impact is particularly evident in places with rapid urbanization and rural cropland intensification. The marginal sensitivity of SUHII to LAIdif is the strongest in hot-humid megacities surrounded by croplands and in hot-dry megacities surrounded by mixed woody and herbaceous vegetation. Our study highlights the role of long-term vegetation trends in modulating the trends of urban-rural temperature differences.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 792 ◽  
Author(s):  
Dariusz Suszanowicz ◽  
Alicja Kolasa Więcek

This study presents the results of a review of publications conducted by researchers in a variety of climates on the implementation of ‘green roofs’ and their impact on the urban environment. Features of green roofs in urban areas have been characterized by a particular emphasis on: Filtration of air pollutants and oxygen production, reduction of rainwater volume discharged from roof surfaces, reduction of so-called ‘urban heat islands’, as well as improvements to roof surface insulation (including noise reduction properties). The review of the publications confirmed the necessity to conduct research to determine the coefficients of the impact of green roofs on the environment in the city centers of Central and Eastern Europe. The results presented by different authors (most often based on a single case study) differ significantly from each other, which does not allow us to choose universal coefficients for all the parameters of the green roof’s impact on the environment. The work also includes analysis of structural recommendations for the future model green roof study, which will enable pilot research into the influence of green roofs on the environment in urban agglomerations and proposes different kinds of plants for different kinds of roofs, respectively.


Sign in / Sign up

Export Citation Format

Share Document