Ionic Conductivity, Morphology and Transport Number of Lithium Ions in PMMA Based Gel Polymer Electrolytes

2013 ◽  
Vol 334-335 ◽  
pp. 137-142 ◽  
Author(s):  
Lisani Othman ◽  
Khairul Bahiyah Md. Isa ◽  
Zurina Osman ◽  
Rosiyah Yahya

The gel polymer electrolytes (GPEs) composed of polymethylmethacrylate (PMMA) with lithium trifluoromethanesulfonate (LiCF3SO3) salt dissolved in a binary mixture of ethylene carbonate (EC) and propylene carbonate (PC) organic solvents have been prepared by the solution casting technique. The samples are prepared by varying the salt concentrations from 5 wt.% to 30 wt.%. Impedance spectroscopy measurement has been carried out to determine the ionic conductivity of the samples. The sample containing 25 wt.% of LiCF3SO3salt exhibits the highest room temperature ionic conductivity of 2.56 x 10-3S cm-1. The conductivity of the GPEs has been found to depend on the salt concentration added to the sample, while at higher salt concentration reveals a decrease in the ionic conductivity due to ions association. The temperature dependence of conductivity from 303 K to 373 K is found to obey the Arrhenius law. The ionic transference number,tiof GPEs has been estimated by the DC polarization method and the value is found to be 0.98, 0.93, and 0.97 for the sample containing 25 wt.%, 5 wt.% and 30 wt.% respectively. This result is consistent with the conductivity studies.

2013 ◽  
Vol 594-595 ◽  
pp. 696-701 ◽  
Author(s):  
Lisani Othman ◽  
Khairul Bahiyah Md. Isa ◽  
Woon Gie Chong ◽  
Nurul Husna Zainol ◽  
Siti Mariam Samin ◽  
...  

The gel polymer electrolytes (GPEs) composed of polymethylmethacrylate (PMMA) with sodium trifluoromethanesulfonate (NaCF3SO3) salt dissolved in a binary mixture of ethylene carbonate (EC) and propylene carbonate (PC) organic solvents have been prepared by solution casting technique. The samples are prepared by varying the salt concentrations from 5 wt.% to 30 wt.%. Impedance spectroscopy measurement has been carried out to determine the ionic conductivity of the GPE samples. The sample containing 20 wt.% of NaCF3SO3salt exhibits the highest room temperature ionic conductivity of 3.10 x 10-3S cm-1. The conductivity of the GPEs has been found to depend on the salt concentration added to the sample though at higher salt concentration reveals decreasing in ionic conductivity due to ions association. The temperature dependence of conductivity from 303 K to 373 K is found to obey the Arrhenius rule. The ionic transference number, ti of GPEs has been estimated by DC polarization method and the value is found to be 0.95, 0.99, and 0.97 for the sample containing 5 wt.%, 20 wt.% and 30 wt.% respectively. This result is consistent with the conductivity studies.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 502
Author(s):  
Khuzaimah Nazir ◽  
Mohamad Fariz Mohamad Taib ◽  
Rosnah Zakaria ◽  
Muhamad Kamil Yaakob ◽  
Oskar Hasdinor Hassan ◽  
...  

A gel polymer electrolytes (GPEs) comprising of 62.3 mol% of epoxidized-30% poly(methyl methacrylate) grafted natural rubber (EMG30) as a polymer host, LiCF3SO3 as a dopant salt and ethylene carbonate (EC) as a plasticizer was prepared by solution-casting technique. The effect of plasticizer on the EMG30- LiCF3SO3 on the ionic conductivity is explained in terms of the plasticizer loading of the film. The temperature dependence of the conductivity of the polymer films obeys the Vogel-Tamman-Fulcher (VTF) relationship. The ionic transference number is calculated using Wagner’s polarization technique shows that the conducting species are predominantly due ions and hence showed the system is an ionic conductor. Surface morphological analysis showed the sample with the highest conductivity exhibited most homogenous in nature.  


2017 ◽  
Vol 13 (1) ◽  
pp. 4618-4627
Author(s):  
Abdulhamid Mohammed Soliman ◽  
Ezeldain El. Shafee

Gel polymer electrolytes synthesized from Poly(methylmethacrylate) (PMMA) as the host, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer and LiCF3SO3 (LiTf) as a salt has been prepared using solution casting technique. X-ray characterization confirms the complete dissociation of the LiTf salt in the gel polymer. The effect of LiTf  salt on ionic conductivity, ionic transference number (tion) and  mechanical characteristics were investigated. The ac impedance has been studied to evaluate the ionic conductivity. It was observed that the ionic conductivity of the prepared gel reached the highest value of  6.60 x 10-5 S/cm at 10.2 wt.% (1M) of LiTf salt. The temperature dependence studies showed that the samples were ionic conductors and seemed to obey the Vogel–Tamman–Fulcher (VTF) rule.  Dynamic mechanical  analysis (DMA) indicates that  the LiTf salt induces a remarkable increase in the storage modulus of the matrix at temperatures above the glass transition (rubbery plateau region).


2013 ◽  
Vol 594-595 ◽  
pp. 786-792 ◽  
Author(s):  
Khairul Bahiyah Md Isa ◽  
Lisani Othman ◽  
Nurul Husna Zainol ◽  
Siti Mariam Samin ◽  
Woon Gie Chong ◽  
...  

Sodium ion conducting gel polymer electrolyte (GPE) films consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) as a polymer host were prepared using the solution casting technique. Sodium trifluoromethane-sulfonate (NaCF3SO3) was used as an ionic salt and the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as the solvent plasticizer. The GPE films were found to be stable up to temperature of 145 °C as shown by TGA analysis. The AC impedance study show that the optimum conductivity of 2.50 x 10-3 S cm-1 at room temperature is achieved for the film containing 20 wt.% of NaCF3SO3 salt. The temperature dependence of conductivity obeys VTF relation in the temperature range of 303 K to 373 K.


2013 ◽  
Vol 686 ◽  
pp. 137-144 ◽  
Author(s):  
N.H. Zainol ◽  
Zurina Osman ◽  
Lisani Othman ◽  
K.B. Md. Isa

Magnesium-ion conducting gel polymer electrolytes (GPEs) based on PMMA with ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizing solvent were prepared via the solution casting technique. Mg(CF3SO3)2 salt was used as source of magnesium ions, Mg2+. The variation of conductivity with salt concentrations, from 5 wt.% to 30 wt.% was studied. The gel polymer electrolyte with composition 20 wt.% of Mg(CF3SO3)2 exhibited the highest conductivity of 1.27 x 10-3 S cm-1 at room temperature. The conductivity-temperature dependence of gel polymer electrolyte films obeys Arrhenius behaviour with activation energy in the range of 0.18 eV to 0.26 eV. Ionic transport number was evaluated using DC polarization technique and it reveals the conducting species are predominantly ions. It is found that the ionic conductivity and transport properties of the prepared GPEs are consistent with the X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) studies.


2013 ◽  
Vol 802 ◽  
pp. 194-198 ◽  
Author(s):  
M.I.N. Isa ◽  
A. S. Samsudin

The present work deals with the findings on the ionic conduction behavior based on ethylene carbonate (EC) as plasticizer in carboxymethyl cellulose (CMC) – dodecyltrimethyl ammonium bromide (DTAB) for green polymer electrolytes (GPEs) that were prepared via solution casting technique. The highest ionic conductivity obtained for CMC-DTAB film was 7.72 x 10-4 S/cm and enhanced to 2.37 x 10-3 S/cm with addition 10wt. % of EC. The conductivity-temperature of GPEs system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The temperature dependence of the power law exponent for plasticized CMC-DTAB based GPEs system follows the quantum mechanical tunneling (QMT) model for conduction mechanism.


2018 ◽  
Vol 21 (1) ◽  
pp. 029-032 ◽  
Author(s):  
A. J. Nagajothi ◽  
R. Kannan ◽  
S. Thanikaikarasan ◽  
P. J. Sebastian

Electrochemical properties and interracial stability of poly (ethylene oxide) (PEO) / lithium (bis) trifluoro-methane-sulfonate imide (LITFSI) with the incorporation of plasticizers (TEGDME & DIOX) and filler (SiO2) based composite gel polymer electrolytes prepared by the simple solution casting technique has been studied. The addition of plasticizers and filler with polymer electrolytes enhances the ionic conductivity at low temperature. The interfacial stability, transport properties and thermal stability were remarkably improved by the addition of SiO2 and plasticizers into the polymer-salt complex matrix. The sample with 2% of plasticizers was found to be optimal in ionic conductivity point of view.


2014 ◽  
Vol 1024 ◽  
pp. 348-351 ◽  
Author(s):  
Nurul Husna Zainol ◽  
Mohd. Zharfan Mohd. Halizan ◽  
Woon Gie Chong ◽  
Zurina Osman

Poly (methyl) methacrylate (PMMA)-based gel polymer electrolytes (GPEs) containing magnesium triflate, Mg (CF3SO3)2 salt were prepared using solution casting technique. Different concentrations of Mg (CF3SO3)2 ranging from 5 wt.% to 30 wt.% have been added into a mixture of ethylene carbonate (EC) and propylene carbonate (PC) with a fixed mass ratio of 2:1. These free-standing GPE films were characterized using electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and cyclic voltammetry (CV). The highest ionic conductivity of 1.27 x 10-3 S cm-1 is obtained from the GPE film containing 20 wt.% of Mg (CF3SO3)2 salt. The electrochemical window stability has been found in the range of-2.5 V to 2.5 V for the highest conducting GPE film. This value is considerably high enough for the GPE film to be used as electrolyte in magnesium rechargeable batteries.


2012 ◽  
Vol 585 ◽  
pp. 185-189 ◽  
Author(s):  
Rajni Sharma ◽  
Anjan Sil ◽  
Subrata Ray

In the present work, the effect of Li salt i.e. LiClO4 contained in composite plasticizer (PC+DEC) with three different concentrations on ionic transport and other electrochemical properties of PMMA based gel polymer electrolytes synthesized has been investigated. The electrolytes have been synthesized by solution casting technique by varying the wt (%) of salt and plasticizer. The formation of polymer-salt complexes and their structural characterization have been carried out by FTIR spectroscopic and XRD analyses. The room temperature ionic conductivity of the electrolyte composition 0.6PMMA-0.125(PC+DEC)-0.15LiClO4 (wt %) has been found to be maximum whose magnitude is 0.40×10-5 S/cm as determined by ac impedance analysis. The temperature dependent ionic conductivity of electrolyte sample0.6PMMA-0.125(PC+DEC)-0.15LiClO4 has further been investigated. Thermal analyses of electrolyte samples of all three compositions have also been done.


2020 ◽  
Vol 32 (2) ◽  
pp. 208-219
Author(s):  
CP Singh ◽  
PK Shukla ◽  
SL Agrawal

Ion conducting gel polymer electrolytes (GPEs) are being intensively studied for their potential applications in various electrochemical devices. The poly(vinyl alcohol)-based GPE films containing ammonium acetate (NH4CH3COO) salt have been studied for various concentrations of salt. The gel electrolyte films (GPEs) have been prepared using solution casting technique. Structural characterization carried out using X-ray diffraction reveals an increase in the amorphous nature of the samples on increasing salt concentration up to 70 wt%. The complexation of polymer and salt has been studied by Fourier-transform infrared analysis. Ionic conductivity of the GPEs has been found to increase with salt concentration and reaches an optimum for an intermediate concentration. The room temperature conductivity isotherm exhibits a maximum in conductivity of 2.64 × 10−4 Scm−1 for 65 wt% salt concentration. The temperature dependence of ionic conductivity exhibits a combination of Arrhenius and Vogel–Tamman–Fulcher behavior. Ion transport in the electrolyte system has been explored using dielectric response of the material and the observed variation in conductivity is suitably correlated to the change in charge carrier concentration and mobility of charge carriers.


Sign in / Sign up

Export Citation Format

Share Document