The Effect of Synthesis Parameters on the Size, Composition, and Stability of Iron Nanoparticles

2021 ◽  
Vol 67 ◽  
pp. 69-79
Author(s):  
Julie E. King ◽  
Adam W. Evans ◽  
Hien Yoong Hah ◽  
Charles E. Johnson ◽  
Adam J. Rondinone ◽  
...  

Magnetic nanoparticles (MNPs) have many uses for biomedical applications including drug delivery, magnetic resonance imaging (MRI) contrast agents, theranostics and hyperthermia. MNPs photo-thermally heated by laser light could be used to treat the typically difficult to access tumors such as glioblastomas. Due to their high magnetic saturation, monometallic iron nanoparticles would have an edge over iron oxide nanoparticles currently being investigated for hyperthermia. The goal of this study was to synthesize spherical iron nanoparticles less than 10 nm in diameter by thermal decomposition. The ability of various biocompatible coatings to protect the metallic iron nanoparticles from oxidation was investigated. Coatings studied included Brij, polyethylene glycol and iron oxide. Transmission electron microscopy and Mössbauer spectroscopy were utilized to characterize the coated and uncoated iron nanoparticles’ size and oxidation state to evaluate the effectiveness of the coatings and the procedures in which the coatings were applied. A ferrite shell was found to provide the best stabilization; however, its longer synthesis time increased particle size distribution. Polymer coatings provided biocompatibility but did not prevent oxidation.

2018 ◽  
Vol 6 (40) ◽  
pp. 6413-6423 ◽  
Author(s):  
Juanjuan Li ◽  
Ruitao Cha ◽  
Yulong Zhang ◽  
Hongbo Guo ◽  
Keying Long ◽  
...  

Even though iron oxide (Fe3O4) nanoparticles are promising materials for magnetic resonance imaging (MRI) contrast agents, their biocompatibility and targeting efficacy still need to be improved.


2015 ◽  
Vol 3 (26) ◽  
pp. 5172-5181 ◽  
Author(s):  
M. Zubair Iqbal ◽  
Xuehua Ma ◽  
Tianxiang Chen ◽  
Ling'e Zhang ◽  
Wenzhi Ren ◽  
...  

Silica-coated-SPIONPs-T1 enhanced MRI contrast agents.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Xin Li ◽  
Zhenhai Xue ◽  
Jinfeng Xia ◽  
Guohong Zhou ◽  
Danyu Jiang ◽  
...  

To develop highly efficient T1/T2 magnetic resonance imaging (MRI) contrast agents (CAs), Gd/Y hydroxide nanosheets were synthesized by a simple exfoliation method from layer compounds using sodium polyacrylate (PAA) as a dispersant and stabilizer. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) results revealed the excellent performance of monolayer nanosheets with thicknesses of up to 1.5 nm. The MRI results of the T1 and T2 relaxation times showed that all of the Gd/Y hydroxide nanosheets have high longitudinal and transverse relaxivities (r1 and r2). In particular, the 10% Gd-LRH nanosheets exhibited excellent MRI performance (r1 = 103 mM−1 s−1, r2 = 372 mM−1 s−1), which is rarely reported. Based on the relationship between the structure of 10% Gd-LRH nanosheets and their MRI performances, and the highly efficient MRI of spaced Gd atoms in the nanosheets, a special model to explain the outstanding MRI performance of the 10% Gd-LRH nanosheets is suggested. The cytotoxicity assessment of the 10% Gd-LRH nanosheets, evaluated by CCK-8 assays on HeLa cells, indicated no significant cytotoxicity. This study presents a significant advancement in 2D nanomaterial MRI CA research, with Gd-doped nanosheets positioned as highly efficient T1/T2 MRI CA candidates.


2015 ◽  
Vol 44 (19) ◽  
pp. 6733-6748 ◽  
Author(s):  
Michael Barrow ◽  
Arthur Taylor ◽  
Patricia Murray ◽  
Matthew J. Rosseinsky ◽  
Dave J. Adams

This tutorial review provides an introduction to the design, polymer selection and synthesis strategies that can be used to develop biocompatible polymer coatings for iron oxide nanoparticles as MRI contrast agents for stem cell tracking.


2017 ◽  
Vol 114 (9) ◽  
pp. 2325-2330 ◽  
Author(s):  
He Wei ◽  
Oliver T. Bruns ◽  
Michael G. Kaul ◽  
Eric C. Hansen ◽  
Mariya Barch ◽  
...  

Medical imaging is routine in the diagnosis and staging of a wide range of medical conditions. In particular, magnetic resonance imaging (MRI) is critical for visualizing soft tissue and organs, with over 60 million MRI procedures performed each year worldwide. About one-third of these procedures are contrast-enhanced MRI, and gadolinium-based contrast agents (GBCAs) are the mainstream MRI contrast agents used in the clinic. GBCAs have shown efficacy and are safe to use with most patients; however, some GBCAs have a small risk of adverse effects, including nephrogenic systemic fibrosis (NSF), the untreatable condition recently linked to gadolinium (Gd) exposure during MRI with contrast. In addition, Gd deposition in the human brain has been reported following contrast, and this is now under investigation by the US Food and Drug Administration (FDA). To address a perceived need for a Gd-free contrast agent with pharmacokinetic and imaging properties comparable to GBCAs, we have designed and developed zwitterion-coated exceedingly small superparamagnetic iron oxide nanoparticles (ZES-SPIONs) consisting of ∼3-nm inorganic cores and ∼1-nm ultrathin hydrophilic shell. These ZES-SPIONs are free of Gd and show a high T1 contrast power. We demonstrate the potential of ZES-SPIONs in preclinical MRI and magnetic resonance angiography.


Author(s):  
Lili Hao ◽  
Peng Wang ◽  
Zhenxu Wu ◽  
Zongliang Wang ◽  
Yu Wang ◽  
...  

Single-modal magnetic resonance imaging (MRI) contrast agents sometimes causes signal confusion in clinical diagnosis. Utilizing ligands to endow iron oxide nanoparticles (IO NPs) with excellent dual-modal MRI contrast efficiency might...


2020 ◽  
Vol 11 (2) ◽  
pp. 8654-8668

Superparamagnetic nanoparticles contain unique magnetic properties that differ from the bulk materials and are able to function at a cellular level due to their size, shape, and surface characteristics. These features make them attractive candidates for drug delivery systems, thermal mediators in hyperthermia, and magnetic resonance imaging (MRI) contrast agents. This review provides an up-to-date overview of the application of iron oxide nanoparticles in cancer diagnosis, drug delivery, treatment, and safety concerns related to these materials are considered, as well. Furthermore, the general principles and challenges of the magnetic behavior of nanoparticles in the field of oncology are also discussed. Firstly, the basic requirements for magnetic nanoparticles for biomedical applications are outlined. The close link between structure, shape, size, and magnetic characterization are described, which is considered essential for non-invasive imaging modality, innovative magnetic-driven nanocarriers, and treatment based on the overheating. In conclusion, investigation of the toxicity profile of novel nanoparticles is provided, as well. In the current review, the attention is focused on the role of magnetic nanoparticles, especially iron oxide nanoparticles in some bioapplications such as magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, and magnetic hyperthermia systems.


Author(s):  
Anton Popov ◽  
Maxim Artemovich Abakumov ◽  
Irina Savintseva ◽  
Artem Ermakov ◽  
Nelly Popova ◽  
...  

Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern...


Sign in / Sign up

Export Citation Format

Share Document