Erosion of Metals in High Speed Mist Flow Evaluation of Thereshold Velocity by Acoustic Emission System

1991 ◽  
Vol 20-28 ◽  
pp. 4047-4054
2020 ◽  
Author(s):  
Pingye Guo ◽  
Gu Juan ◽  
Su Yi ◽  
Jiong Wang ◽  
Zhanwen Ding

Abstract The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering. Tensile strength tests were conducted on a total of 35 sandstone specimens with different wetting-drying cycles. The crack propagation process and acoustic emission characteristics were obtained through a high-speed camera and acoustic emission system. The results indicate that the tensile strength is observably reduced after cyclic wetting-drying, and the extent of the reduction is not only related to the number of wetting-drying cycle, but also closely related to the clay mineral content of the sample. In addition, as the cycles of wetting-drying increase, the effect of each single cycle on tensile strength is getting smaller and smaller until becoming constant. Moreover, the crack initiation and penetration time is prolonged as the number of wetting-dry cycle increases, which indicates that cyclic wetting-drying weakens the rock stiffness and enhances the ductility of sandstone. Meanwhile, the acoustic emission characteristics during the experiment further confirmed this phenomenon. Furthermore, through the analysis of the microstructure and mineral composition of the samples with different wetting-drying cycles, it is concluded that the main weakening mechanisms of sandstones containing clay minerals are frictional reduction, chemical and corrosive deterioration.


Author(s):  
Pingye Guo ◽  
Juan Gu ◽  
Yi Su ◽  
Jiong Wang ◽  
Zhanwen Ding

AbstractThe understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering. Tensile strength tests were conducted on a total of 35 sandstone specimens with different wetting-drying cycles. The crack propagation process and acoustic emission characteristics of the tested samples were obtained through a high-speed camera and acoustic emission system. The results indicate that the tensile strength is observably reduced after cyclic wetting-drying, and the extent of the reduction is not only related to the number of wetting-drying cycle, but also closely related to the clay mineral content of the sample. In addition, as the cycles of wetting-drying increase, the effect of each single cycle on tensile strength get reduced until it becomes constant. Moreover, the crack initiation and penetration time is prolonged as the number of wetting-drying cycle increases, which indicates that cyclic wetting-drying weakens the rock stiffness and enhances the ductility of sandstone. Meanwhile, the acoustic emission characteristics of the tested samples further confirmed the ductile behaviour of the sandstone samples with increasing wetting-drying cycle. Furthermore, through the analysis of the microstructure and mineral composition of the samples with different wetting-drying cycles, it is concluded that the main weakening mechanisms of sandstones containing clay minerals are frictional reduction, chemical and corrosive deterioration.


2020 ◽  
Author(s):  
Pingye guo ◽  
Gu Juan ◽  
Su Yi ◽  
Jiong Wang ◽  
Zhanwen Ding

Abstract The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering. Tensile strength tests were conducted on a total of 35 sandstone specimens with different wetting-drying cycles. The crack propagation process and acoustic emission characteristics of the tested samples were obtained through a high-speed camera and acoustic emission system. The results indicate that the tensile strength is observably reduced after cyclic wetting-drying, and the extent of the reduction is not only related to the number of wetting-drying cycle, but also closely related to the clay mineral content of the sample. In addition, as the cycles of wetting-drying increase, the effect of each single cycle on tensile strength get reduced until it becomes constant.. Moreover, the crack initiation and penetration time is prolonged as the number of wetting-drying cycle increases, which indicates that cyclic wetting-drying weakens the rock stiffness and enhances the ductility of sandstone. Meanwhile, the acoustic emission characteristics of the tested samples further confirmed the ductile behaviour of the sandstone samples with increasing wetting-drying cycle. Furthermore, through the analysis of the microstructure and mineral composition of the samples with different wetting-drying cycles, it is concluded that the main weakening mechanisms of sandstones containing clay minerals are frictional reduction, chemical and corrosive deterioration.


2020 ◽  
Vol 56 (12) ◽  
pp. 960-970
Author(s):  
N. A. Makhutov ◽  
V. I. Ivanov ◽  
A. G. Sokolova ◽  
I. E. Vasil’ev ◽  
D. V. Chernov ◽  
...  

2019 ◽  
Vol 85 (6) ◽  
pp. 53-63 ◽  
Author(s):  
I. E. Vasil’ev ◽  
Yu. G. Matvienko ◽  
A. V. Pankov ◽  
A. G. Kalinin

The results of using early damage diagnostics technique (developed in the Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) for detecting the latent damage of an aviation panel made of composite material upon bench tensile tests are presented. We have assessed the capabilities of the developed technique and software regarding damage detection at the early stage of panel loading in conditions of elastic strain of the material using brittle strain-sensitive coating and simultaneous crack detection in the coating with a high-speed video camera “Video-print” and acoustic emission system “A-Line 32D.” When revealing a subsurface defect (a notch of the middle stringer) of the aviation panel, the general concept of damage detection at the early stage of loading in conditions of elastic behavior of the material was also tested in the course of the experiment, as well as the software specially developed for cluster analysis and classification of detected location pulses along with the equipment and software for simultaneous recording of video data flows and arrays of acoustic emission (AE) data. Synchronous recording of video images and AE pulses ensured precise control of the cracking process in the brittle strain-sensitive coating (tensocoating)at all stages of the experiment, whereas the use of structural-phenomenological approach kept track of the main trends in damage accumulation at different structural levels and identify the sources of their origin when classifying recorded AE data arrays. The combined use of oxide tensocoatings and high-speed video recording synchronized with the AE control system, provide the possibility of definite determination of the subsurface defect, reveal the maximum principal strains in the area of crack formation, quantify them and identify the main sources of AE signals upon monitoring the state of the aviation panel under loading P = 90 kN, which is about 12% of the critical load.


Author(s):  
Yu Sik Kong ◽  
Muralimohan Cheepu ◽  
Jin-Kyung Lee

Friction welding was chosen for its versatility in the joining of dissimilar materials with high quality. The aim of this study is to determine the optimal welding conditions for attaining quality joints by using online monitoring of acoustic emission system signals. During friction welding, the formation of cracks, defects, or any abnormalities in the joining process which have a detrimental effect on the joints quality was identified. The most widely used materials in the aerospace industry—Inconel 718 and molybdenum steel—were joined by friction welding. The precision of the joints, internal defects, and quality are major concerns for aerospace parts. The results of the present research determined the optimal welding conditions for high tensile strength by nondestructively inducing acoustic emission signals. During friction time and upset time periods, the typical waveforms and frequency spectrum of the acoustic emission signals were recorded, and their energy level, average frequency, cumulative count, and amplitude were analyzed. Both cumulative count and amplitude were found to be useful parameters for deriving the optimal welding conditions. In the initial stage of friction welding, a very high voltage of continuous form was generated with frequency characteristics of 0.44 MHz and 0.54 MHz. The signals generated during the upset stage had a low voltage, but a very high frequency of 1.56 MHz and 1.74 MHz with a burst-type signal. The amplitude of the signal generated for the optimally welded joints was about 100 dB at the friction time and about 45 dB at the upset time.


2021 ◽  
pp. 147592172110360
Author(s):  
Dongming Hou ◽  
Hongyuan Qi ◽  
Honglin Luo ◽  
Cuiping Wang ◽  
Jiangtian Yang

A wheel set bearing is an important supporting component of a high-speed train. Its quality and performance directly determine the overall safety of the train. Therefore, monitoring a wheel set bearing’s conditions for an early fault diagnosis is vital to ensure the safe operation of high-speed trains. However, the collected signals are often contaminated by environmental noise, transmission path, and signal attenuation because of the complexity of high-speed train systems and poor operation conditions, making it difficult to extract the early fault features of the wheel set bearing accurately. Vibration monitoring is most widely used for bearing fault diagnosis, with the acoustic emission (AE) technology emerging as a powerful tool. This article reports a comparison between vibration and AE technology in terms of their applicability for diagnosing naturally degraded wheel set bearings. In addition, a novel fault diagnosis method based on the optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) and chirp Z-transform (CZT) is proposed to diagnose early composite fault defects in a wheel set bearing. The optimization CYCBD is adopted to enhance the fault-induced impact response and eliminate the interference of environmental noise, transmission path, and signal attenuation. CZT is used to improve the frequency resolution and match the fault features accurately under a limited data length condition. Moreover, the efficiency of the proposed method is verified by the simulated bearing signal and the real datasets. The results show that the proposed method is effective in the detection of wheel set bearing faults compared with the minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD) methods. This research is also the first to compare the effectiveness of applying AE and vibration technologies to diagnose a naturally degraded high-speed train bearing, particularly close to actual line operation conditions.


Sign in / Sign up

Export Citation Format

Share Document