Interaction of a Screw Dislocation with an Interfacial Crack in Two Dissimilar Piezoelectric Layers

2004 ◽  
Vol 261-263 ◽  
pp. 141-146
Author(s):  
Jin Xi Liu ◽  
Ai Ping Liu ◽  
Z.Q. Jiang ◽  
Ai Kah Soh

A screw dislocation interacting with a semi-infinite interfacial crack in two dissimilar piezoelectric layers is studied. The complex variable method and the conformal mapping technique are employed to obtain the solution of the problem. The stress and electric displacement intensity factors are given explicitly. We find that the stress and electric displacement intensity factors depend on the effective electro-elastic material constants. Numerical example shows that the influence of piezoelectric effect on the crack tip shielding is significant.

2014 ◽  
Vol 1015 ◽  
pp. 97-100
Author(s):  
Yao Dai ◽  
Xiao Chong ◽  
Ying Chen

The higher order crack-tip fields for an anti-plane crack situated in the interface between functionally graded piezoelectric materials (FGPMs) and homogeneous piezoelectric materials (HPMs) are presented. The mechanical and electrical properties of the FGPMs are assumed to be linear functions of y perpendicular to the crack. The crack surfaces are supposed to be insulated electrically. By using the method of eigen-expansion, the higher order stress and electric displacement crack tip fields for FGPMs and HPMs are obtained. The analytic expressions of the stress intensity factors and the electric displacement intensity factors are derived.


2005 ◽  
Vol 9 ◽  
pp. 183-190
Author(s):  
Jin Xi Liu ◽  
X.L. Liu

This paper is concerned with the interaction of a piezoelectric screw dislocation with a semi-infinite dielectric crack in a piezoelectric medium with hexagonal symmetry. The solution of the considered problem is obtained from the dislocation solution of a piezoelectric half-plane adjoining a gas medium of dielectric constant ε0 by using the conformal mapping method. The intensity factors of stress, electric displacement and electric field and the image force on the dislocation are given explicitly. The effect of electric boundary conditions on the dislocation-crack interaction is analyzed and discussed in detail. The results show that ε0 only influences the electric displacement and electric field intensity factors and the image force produced by the electric potential jump.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Lian he Li ◽  
Yue Zhao

Interaction of a screw dislocation with wedge-shaped cracks in one-dimensional hexagonal piezoelectric quasicrystals bimaterial is considered. The general solutions of the elastic and electric fields are derived by complex variable method. Then the analytical expressions for the phonon stresses, phason stresses, and electric displacements are given. The stresses and electric displacement intensity factors of the cracks are also calculated, as well as the force on dislocation. The effects of the coupling constants, the geometrical parameters of cracks, and the dislocation location on stresses intensity factors and image force are shown graphically. The distribution characteristics with regard to the phonon stresses, phason stresses, and electric displacements are discussed in detail. The solutions of several special cases are obtained as the results of the present conclusion.


2012 ◽  
Vol 268-270 ◽  
pp. 1148-1152
Author(s):  
Rui Ting Ma

In this paper, by using complex variable function and conformal mapping technique, the author studies the stress concentration intensities of silo wall opening through predigesting the stress calculation of silo wall opening as a problem of plane calculation and obtains the stress concentration factor of opening. When simplified silo wall is subjected to in-plane tension or pressure, maximal stress concentration point around opening is at the corner of opening. this paper may provide some referenced value to the designers.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
G. E. Tupholme

Representations in a closed form are derived, using an extension to the method of dislocation layers, for the phonon and phason stress and electric displacement components in the deformation of one-dimensional piezoelectric quasicrystals by a nonuniformly loaded stack of parallel antiplane shear cracks. Their dependence upon the polar angle in the region close to the tip of a crack is deduced, and the field intensity factors then follow. These exhibit that the phenomenon of crack shielding is dependent upon the relative spacing of the cracks. The analogous analyses, that have not been given previously, involving non-piezoelectric or non-quasicrystalline or simply elastic materials can be straightforwardly considered as special cases. Even when the loading is uniform and the crack is embedded in a purely elastic isotropic solid, no explicit representations have been available before for the components of the field at points other than directly ahead of a crack. Typical numerical results are graphically displayed.


1997 ◽  
Vol 36 (Part 1, No. 2) ◽  
pp. 652-656 ◽  
Author(s):  
Walter Wohlmuth ◽  
Mohamed Arafa ◽  
Patrick Fay ◽  
Jong-Wook Seo ◽  
Ilesanmi Adesida

Sign in / Sign up

Export Citation Format

Share Document