Residual Stress Measurement and Evaluation on Ceramics with X-Ray and Indentation Method

2006 ◽  
Vol 321-323 ◽  
pp. 1348-1352
Author(s):  
Tarou Tokuda ◽  
Rong Gang Wang ◽  
Gonojo Katayama ◽  
Mitsuo Kido

In this report, the indentation method of measurement for residual stress in structural ceramics is discussed. The residual stresses in Al2O3, Si3N4 and ZrO2 ceramics were evaluated with the indentation method. The value obtained by the indentation method was examined as a function of the microstructure, using Al2O3 ceramics differing in microstructure (grain size and aspect ratio). The residual stress values in Al2O3 and Si3N4 obtained by the indentation method at 98 N agreed well with the values obtained by the X-ray method. The residual stress value in ZrO2 obtained by the indentation method was close to the value obtained by the X-ray method, when the indentation load was 294 N. For estimating the residual stress in ZrO2 with the indentation method, the influence of the phase transformation induced by the indentation is added to the original residual stress, when the indentation is small. The value obtained by indentation method differed with the aspect ratio of the grains in Al2O3. It was thought that the origin of the variation was the difference in crack propagation resistance in different materials

2005 ◽  
Vol 297-300 ◽  
pp. 515-520
Author(s):  
Tarou Tokuda ◽  
Rong Gang Wang ◽  
Mitsuo Kido ◽  
Gonojo Katayama

This study deals with the indentation method of measuring residual stress in structural ceramics. First we investigate the appropriate pretreatment for measuring fracture toughness (basis value, KC) while avoiding any influence from residual stress, which is important when estimating residual stress using the indentation method. Based on the fracture toughness value, the residual stresses in Al2O3, Si3N4 and ZrO2 ceramics are estimated using the indentation method. Phase transformation is a problem when estimating residual stress using the indentation method with ZrO2 ceramics. Residual stresses in Al2O3 and Si3N4 can be largely eliminated by annealing the specimen after hand grinding. Consequently, it is thought that this treatment method is effective for determining the basis value KC. The estimated residual stress values in Al2O3 and Si3N4 obtained by the indentation method at 98 N corresponded closely to the values obtained wih X-rays. The residual stress value obtained by the indentation method for ZrO2 was close to the value obtained through the X-ray method, when the indentation load was 294 N. When estimating the residual stress in ZrO2 using the indentation method, the influence of the phase transformation caused by the indentation is added onto the original residual stress, when the indentation is small. The influence becomes smaller when the indentation load is large. If the applied indentation load is between 294 N and 490 N, the indentation method is effective for estimating the residual stresses in Al2O3, Si3N4 and ZrO2 ceramics.


1989 ◽  
Vol 33 ◽  
pp. 171-175
Author(s):  
Toshihiko Sasaki ◽  
Makoto Kuramoto ◽  
Yasuo Yoshioka

Zn-Ni-alloy electroplated steels are one of the surface-treated materials with a high corrosion resistance and are mostly used for automobiles. It is said that the corrosion resistance is more than four times as great as that of Zn-plated steels. Concerning x-ray stress measurement, Kyono et al reported the result of measurement on y (552) planes and showed that the sin2φ diagram was severely curved.X-ray stress analysis in surface-treated materials will become more important. Some problems, however, remain to be studied when we apply the x-ray method to thin layers. For example, the effective x-ray penetration depth may be different from that in ordinary materials. And complex gradients of stresses and compositions may exist.


2014 ◽  
Vol 996 ◽  
pp. 175-180 ◽  
Author(s):  
Rasha Alkaisee ◽  
Ru Lin Peng

For X-Ray Diffraction Measurement of Depth Profiles of Residual Stress, Step-Wise Removal of Materials has to be Done to Expose the Underneath Layers to the X-Rays. this Paper Investigates the Influence of Layer Removal Methods, Including Electro-Polishing in Two Different Electrolytes and Chemical Etching, on the Accuracy of Residual Stress Measurement. Measurements on Two Shot-Peened Steels Revealed Large Discrepancy in Subsurface Distributions of Residual Stress Obtained with the Respective Methods. Especially, the Chemical Etching Yielded much Lower Subsurface Compressive Stresses than the Electro-Polishing Using a so Called AII Electrolyte. the Difference was Explained by the Influence of the Different Layer Removal Methods on the Microscopic Roughness.


1993 ◽  
Vol 37 ◽  
pp. 317-325
Author(s):  
Masaaki Tsuda ◽  
Tokimasa Goto ◽  
Toshihiko Sasaki ◽  
Yukio Hirose

Residual stress is inevitably introduced into composites because of the mismatch of the coefficient of thermal expansion, and it is different for each phase. The x-ray method can detect separately the stress in each phase, so will yield useful information for analyzing the toughening mechanisms of composites.


2008 ◽  
Vol 571-572 ◽  
pp. 249-254 ◽  
Author(s):  
Toshihiko Sasaki ◽  
Yohei Miyazawa ◽  
Shunichi Takahashi ◽  
Ryohei Matsuyama ◽  
Katsunari Sasaki ◽  
...  

The X-ray stress measurement with synchrotron radiation (SR) and an image plate (IP) was conducted using the facility of the Photon Factory (PF) of the High Energy Accelerator Research Organization (KEK). The influence of 2θ on stress measurement with the cosα method was investigated. The experiments were conducted under the conditions of 2θ=170 deg, 156.4 deg and 127 deg respectively. It was found that the hypothesis on the relation between the accuracy and the diffraction angle in the X-ray method is not valid in case of the cosα method.


2013 ◽  
Vol 2013 (0) ◽  
pp. _OS1816-1_-_OS1816-3_
Author(s):  
Keisuke TANAKA ◽  
Shohei TOKORO ◽  
Yuuki KOIKE ◽  
Noboru EGAMI ◽  
Yoshiaki AKINIWA

Sign in / Sign up

Export Citation Format

Share Document