Dynamic Measurement and Modeling of Soft Tissue Behavior with an Indentation Device Using Indenters of Various Shapes

2006 ◽  
Vol 326-328 ◽  
pp. 781-784 ◽  
Author(s):  
Bummo An ◽  
Jung Kim

In this paper, we performed the dynamic measurement and modeling of soft tissue with removing samples from the main body to characterize the soft tissue properties for medical simulations. The measurement method made various patterns of normal surface indentations of a soft tissue. Next, the reaction forces through the indenter were measured using a force transducer. From the force-displacement profile, the nonlinear properties were observed in a relatively small deformation range and the frequency responses of the tissue were obtained using a series of sinusoidal indentations below 3 Hz. We developed a viscoelastic model of the tissues from the recorded force-displacement profiles, from which we can develop a model to predict the behavior of the tissues. The developed model, combined with the anatomical model, could provide a visible deformation and haptic feedback for virtual reality based medical simulations.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xuemei Liu ◽  
Ruiyi Wang ◽  
Yunhua Li ◽  
Dongdong Song

We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a kind of meshfree method for deformation simulation of soft tissue and force computation based on viscoelastic mechanical model and smoothed particle hydrodynamics (SPH). Firstly, viscoelastic model can present the mechanical characteristics of soft tissue which greatly promotes the realism. Secondly, SPH has features of meshless technique and self-adaption, which supply higher precision than methods based on meshes for force feedback computation. Finally, a SPH method based on dynamic interaction area is proposed to improve the real time performance of simulation. The results reveal that SPH methodology is suitable for simulating soft tissue deformation and force feedback calculation, and SPH based on dynamic local interaction area has a higher computational efficiency significantly compared with usual SPH. Our algorithm has a bright prospect in the area of virtual surgery.


2016 ◽  
pp. 1712-1729
Author(s):  
Hashem Yousefi ◽  
Mehdi Fallahnezhad

Needle insertion has been a very popular minimal invasive surgery method in cancer detection, soft tissue properties recognition and many other surgical operations. Its applications were observed in brain biopsy, prostate brachytherapy and many percutaneous therapies. In this study the authors would like to provide a model of needle force in soft tissue insertion. This model has been developed using higher order polynomial networks. In order to provide a predictive model one-dimensional force sensed on enacting end of bevel-tip needles. The speeds of penetration for quasi-static processes have chosen to be in the range of between 5 mm/min and 300 mm/min. Second and third orders of polynomials employed in the network which contains displacement and speed as their main affecting parameters in the simplified model. Results of fitting functions showed a reliable accuracy in force-displacement graph.


2008 ◽  
Vol 2 (3) ◽  
Author(s):  
James Mayrose

A device for measuring the biomechanical properties of soft tissue via palpation was developed. The device, which is worn by a medical professional, incorporates sensors that collect data on the position of the users’ hand in three-dimensional space as well as the force that the user applies to the tissue. The depth of palpation, the force used to achieve that depth, and the thickness of the tissue obtained from a computed tomography scan of the abdomen were used to calculate the stiffness properties of each individual layer of tissue. Some experimental data obtained by curve fitting force-displacement curves are presented. The data obtained from this experiment illustrates the potential of this device to be used for accurate measurement of soft tissue properties.


2015 ◽  
Vol 5 (3) ◽  
pp. 54-70
Author(s):  
Hashem Yousefi ◽  
Mehdi Fallahnezhad

Needle insertion has been a very popular minimal invasive surgery method in cancer detection, soft tissue properties recognition and many other surgical operations. Its applications were observed in brain biopsy, prostate brachytherapy and many percutaneous therapies. In this study the authors would like to provide a model of needle force in soft tissue insertion. This model has been developed using higher order polynomial networks. In order to provide a predictive model one-dimensional force sensed on enacting end of bevel-tip needles. The speeds of penetration for quasi-static processes have chosen to be in the range of between 5 mm/min and 300 mm/min. Second and third orders of polynomials employed in the network which contains displacement and speed as their main affecting parameters in the simplified model. Results of fitting functions showed a reliable accuracy in force-displacement graph.


Author(s):  
Berk Gonenc ◽  
Hakan Gurocak

Surgical training is an important and recent application where haptic interfaces are used to enhance the realism of virtual training simulators. Tissue cutting with surgical scissors is a common interaction mode in the simulations. The haptic interface needs to render a wide range of tissue properties and resistance forces accurately. In this research, we developed a hybrid haptic device made of a DC servomotor and a magnetorheological (MR) brake. The motor can provide fast dynamic response and compensate for inertia and friction effects of the device. But alone, it cannot supply high force levels and the sensation of stiff interaction with hard tissues such as tendons. On the other hand, the MR-brake can provide very stiff interaction forces yet cannot reflect fast dynamics that are encountered as the virtual scissors go through the tissue. The hybrid actuator developed in this work combines the two based on a control scheme that decomposes the actuator command signal into two branches considering each actuator's capabilities. It is implemented on a compact single degree-of-freedom (DOF) interface to simulate virtual tissue cutting with three different scissor types (Mayo, Metzenbaum, Iris) and four types of rat tissue (liver, muscle, skin, tendon). Results have shown close tracking of the desired force profile in all cases. Compared to just using a DC motor, the hybrid actuator provided a wider range of forces (up to 18 N) with fast response to render quick force variations without any instability for all simulated tissue and scissor types.


2005 ◽  
Vol 98 (4) ◽  
pp. 1434-1441 ◽  
Author(s):  
Lauren D. Black ◽  
Kelly K. Brewer ◽  
Shirley M. Morris ◽  
Barbara M. Schreiber ◽  
Paul Toselli ◽  
...  

Pulmonary emphysema and vessel wall aneurysms are diseases characterized by elastolytic damage to elastin fibers that leads to mechanical failure. To model this, neonatal rat aortic smooth muscle cells were cultured, accumulating an extracellular matrix rich in elastin, and mechanical measurements were made before and during enzymatic digestion of elastin. Specifically, the cells in the cultures were killed with sodium azide, the cultures were lifted from the flask, cut into small strips, and fixed to a computer-controlled lever arm and a force transducer. The strips were subjected to a broadband displacement signal to study the dynamic mechanical properties of the samples. Also, quasi-static stress-strain curves were measured. The dynamic data were fit to a linear viscoelastic model to estimate the tissues' loss (G) and storage (H) modulus coefficients, which were evaluated before and during 30 min of elastase treatment, at which point a failure test was performed. G and H decreased significantly to 30% of their baseline values after 30 min. The failure stress of control samples was ∼15 times higher than that of the digested samples. Understanding the structure-function relationship of elastin networks and the effects of elastolytic injury on their mechanical properties can lead to the elucidation of the mechanism of elastin fiber failure and evaluation of possible treatments to enhance repair in diseases involving elastolytic injury.


2002 ◽  
Vol 12 ◽  
pp. 146-153 ◽  
Author(s):  
J.-M. Schwartz ◽  
M. Dellinger ◽  
D. Rancourt ◽  
C. Moisan ◽  
D. Laurendeau

Sign in / Sign up

Export Citation Format

Share Document