A Noninvasive System for Biomechanical Properties Measurement of Soft Tissue

2008 ◽  
Vol 2 (3) ◽  
Author(s):  
James Mayrose

A device for measuring the biomechanical properties of soft tissue via palpation was developed. The device, which is worn by a medical professional, incorporates sensors that collect data on the position of the users’ hand in three-dimensional space as well as the force that the user applies to the tissue. The depth of palpation, the force used to achieve that depth, and the thickness of the tissue obtained from a computed tomography scan of the abdomen were used to calculate the stiffness properties of each individual layer of tissue. Some experimental data obtained by curve fitting force-displacement curves are presented. The data obtained from this experiment illustrates the potential of this device to be used for accurate measurement of soft tissue properties.

Geology ◽  
2021 ◽  
Author(s):  
Heriberto Rochín-Bañaga ◽  
Donald W. Davis ◽  
Tobias Schwennicke

Previous U-Pb dating of fossils has had only limited success because of low uranium content and abundance of common Pb as well as element mobility during late diagenesis. We report the first accurate U-Pb dating of fossilized soft tissue from a Pliocene phosphatized bivalve mold using laser ablation–inductively coupled mass spectrometry (LA-ICPMS). The fossilized soft tissue yields a diagenetic U-Pb age of 3.16 ± 0.08 Ma, which is consistent with its late Pliocene stratigraphy and similar to the oldest U-Pb age measured on accompanying shark teeth. Phosphate extraclasts give a distinctly older age of 5.1 ± 1.7 Ma, indicating that they are likely detrital and may have furnished P, promoting phosphatization of the mold. The U-Pb ages reported here along with stratigraphic constraints suggest that diagenesis occurred shortly after the death of the bivalve and that the U-Pb system in the bivalve mold remained closed until the present. Shark teeth collected from the same horizon show variable resetting due to late diagenesis. Data were acquired as line scans in order to exploit the maximum Pb/U variation and were regressed as counts, rather than ratios, in three-dimensional space using a Bayesian statistical method.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


2021 ◽  
Vol 1111 (1) ◽  
pp. 012034
Author(s):  
N A Maksimov ◽  
K Zhigalov ◽  
A V Gorban ◽  
I V Ignatev

Sign in / Sign up

Export Citation Format

Share Document