Possible relations between female pelvic pathologies and soft tissue properties

2011 ◽  
pp. 241-246
Author(s):  
Ming Jia ◽  
Jean W. Zu ◽  
Alireza Hariri

Knowledge of tissue mechanical properties is widely required by medical applications, such as disease diagnostics, surgery operation, simulation, planning, and training. A new portable device, called Tissue Resonator Indenter Device (TRID), has been developed for measurement of regional viscoelastic properties of soft tissues at the Bio-instrument and Biomechanics Lab of the University of Toronto. As a device for soft tissue properties in-vivo measurements, the reliability of TRID is crucial. This paper presents TRID’s working principle and the experimental study of TRID’s reliability with respect to inter-reliability, intra-reliability, and the indenter misalignment effect as well. The experimental results show that TRID is a reliable device for in-vivo measurements of soft tissue mechanical properties.


Author(s):  
Francis E. Kennedy ◽  
Marvin M. Doyley ◽  
Elijah E. W. Van Houten ◽  
John B. Weaver ◽  
Keith D. Paulsen

In-vivo measurement of the elastic properties of soft tissue have been made using a variety of direct techniques, such as indentation probes and rotary shear actuators, but they are unable to access much of the soft tissue of interest. Indirect ultrasonic methods for imaging elastic properties of soft tissue were first introduced about 15 years ago, see Ophir (1991). Although the results of ultrasonic elastography studies have been quite promising, they may not be suited for applications requiring accurate quantification of soft tissue properties. An alternative to ultrasound, magnetic resonance imaging, has the advantage of enabling precise measurement of all three components of tissue displacement. The reconstruction of elastic properties from the imaged displacement field is called magnetic resonance elastography (MRE), and is the subject of this paper.


Author(s):  
Eik Siggelkow ◽  
Iris Sauerberg ◽  
Francesco Benazzo ◽  
Marc Bandi

Passive knee kinematics and kinetics following total knee replacement (TKR) are dependent on the topology of the component joint surfaces as well as the properties of the passive soft tissue structures (ligaments and capsule). Recently, explicit computer models have been used for the prediction of knee joint kinematics based on experimental investigations [1]. However, most of these models replicate experimental knee simulators [2], which simulate soft tissue structures using springs or elastomeric structures. New generations of experimental setups deploy industrial robots for measuring kinematics and kinetics in six degrees of freedom as well as the contribution of soft tissue structures. Based on these experiments, accurate soft tissue properties are available for use in computer models to aid more realistic predictions of kinematics. Final evidence of the quality of the kinematic predictions from these computer models can be provided by direct validation of the models against experimental data. Therefore, the objective of this study was to use in vitro robotic test data to develop, verify, and validate specimen specific virtual models suitable for predicting laxity and kinematics of the reconstructed knee.


2021 ◽  
Vol 12 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Andreas Konrad ◽  
Ryosuke Kiyono ◽  
Shigeru Sato ◽  
Kaoru Yahata ◽  
...  

In sports and clinical settings, roller massage (RM) interventions are used to acutely increase range of motion (ROM); however, the underlying mechanisms are unclear. Apart from changes in soft tissue properties (i.e., reduced passive stiffness), neurophysiological alterations such as decreased spinal excitability have been described. However, to date, no study has investigated both jointly. The purpose of this trial was to examine RM’s effects on neurophysiological markers and passive tissue properties of the plantar flexors in the treated (ROLL) and non-treated (NO-ROLL) leg. Fifteen healthy individuals (23 ± 3 years, eight females) performed three unilateral 60-s bouts of calf RM. This procedure was repeated four times on separate days to allow independent assessments of the following outcomes without reciprocal interactions: dorsiflexion ROM, passive torque during passive dorsiflexion, shear elastic modulus of the medial gastrocnemius muscle, and spinal excitability. Following RM, dorsiflexion ROM increased in both ROLL (+19.7%) and NO-ROLL (+13.9%). Similarly, also passive torque at dorsiflexion ROM increased in ROLL (+15.0%) and NO-ROLL (+15.2%). However, there were no significant changes in shear elastic modulus and spinal excitability (p > 0.05). Moreover, significant correlations were observed between the changes in DF ROM and passive torque at DF ROM in both ROLL and NO-ROLL. Changes in ROM after RM appear to be the result of sensory changes (e.g., passive torque at DF ROM), affecting both rolled and non-rolled body regions. Thus, therapists and exercise professionals may consider applying remote treatments if local loading is contraindicated.


2006 ◽  
Vol 326-328 ◽  
pp. 781-784 ◽  
Author(s):  
Bummo An ◽  
Jung Kim

In this paper, we performed the dynamic measurement and modeling of soft tissue with removing samples from the main body to characterize the soft tissue properties for medical simulations. The measurement method made various patterns of normal surface indentations of a soft tissue. Next, the reaction forces through the indenter were measured using a force transducer. From the force-displacement profile, the nonlinear properties were observed in a relatively small deformation range and the frequency responses of the tissue were obtained using a series of sinusoidal indentations below 3 Hz. We developed a viscoelastic model of the tissues from the recorded force-displacement profiles, from which we can develop a model to predict the behavior of the tissues. The developed model, combined with the anatomical model, could provide a visible deformation and haptic feedback for virtual reality based medical simulations.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20202809
Author(s):  
Sarah Broyde ◽  
Matthew Dempsey ◽  
Linjie Wang ◽  
Philip G. Cox ◽  
Michael Fagan ◽  
...  

Biomechanical modelling is a powerful tool for quantifying the evolution of functional performance in extinct animals to understand key anatomical innovations and selective pressures driving major evolutionary radiations. However, the fossil record is composed predominantly of hard parts, forcing palaeontologists to reconstruct soft tissue properties in such models. Rarely are these reconstruction approaches validated on extant animals, despite soft tissue properties being highly determinant of functional performance. The extent to which soft tissue reconstructions and biomechanical models accurately predict quantitative or even qualitative patterns in macroevolutionary studies is therefore unknown. Here, we modelled the masticatory system in extant rodents to objectively test the ability of current muscle reconstruction methods to correctly identify quantitative and qualitative differences between macroevolutionary morphotypes. Baseline models generated using measured soft tissue properties yielded differences in muscle proportions, bite force, and bone stress expected between extant sciuromorph, myomorph, and hystricomorph rodents. However, predictions from models generated using reconstruction methods typically used in fossil studies varied widely from high levels of quantitative accuracy to a failure to correctly capture even relative differences between macroevolutionary morphotypes. Our novel experiment emphasizes that correctly reconstructing even qualitative differences between taxa in a macroevolutionary radiation is challenging using current methods. Future studies of fossil taxa should incorporate systematic assessments of reconstruction error into their hypothesis testing and, moreover, seek to expand primary datasets on muscle properties in extant taxa to better inform soft tissue reconstructions in macroevolutionary studies.


2018 ◽  
Vol 89 (9) ◽  
pp. 1025-1032 ◽  
Author(s):  
Francesca Bonino ◽  
Bjorn Steffensen ◽  
Zuhair Natto ◽  
Yong Hur ◽  
Lucrezia Paternò Holtzman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document