3D Riveting Process Simulation of Laminated Composites

2007 ◽  
Vol 334-335 ◽  
pp. 405-408 ◽  
Author(s):  
Seung Jo Kim ◽  
Seung Hoon Paik ◽  
Kuk Hyun Ji ◽  
Tae Ho Yoon

Laminated composite plates have lower interlaminar strength making it difficult to apply interference-fit rivet joining. In this paper, a three-dimensional finite element model has been developed in order to simulate the riveting process on composite plates. The finite element model is based on continuum elements and accounts for some important mechanisms involved in a whole riveting process. The stresses around the rivet hole and the deformed shapes of the rivet are presented together with the effects of the interference fit and the geometry of the washer when the rivet joints are subjected to the compressive load. The numerical results show the applicability of an interference-fit riveting in composite laminates.

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
R. M. Kanasogi ◽  
M. C. Ray

This paper deals with the analysis of active constrained layer damping (ACLD) of smart skew laminated composite plates. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). A finite element model has been developed for accomplishing the task of the active constrained layer damping of skew laminated symmetric and antisymmetric cross-ply and antisymmetric angle-ply composite plates integrated with the patches of such ACLD treatment. Both in-plane and out-of-plane actuations by the constraining layer of the ACLD treatment have been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. Particular emphasis has been placed on investigating the performance of the patches when the orientation angle of the piezoelectric fibers of the constraining layer is varied in the two mutually orthogonal vertical planes. Also, the effects of varying the skew angle of the substrate laminated composite plates and different boundary conditions on the performance of the patches have been studied. The analysis reveals that the vertically and the obliquely reinforced 1–3 PZC materials should be used for achieving the best control authority of ACLD treatment, as the boundary conditions of the smart skew laminated composite plates are simply supported and clamped-clamped, respectively.


2007 ◽  
Vol 74 (6) ◽  
pp. 1114-1124 ◽  
Author(s):  
Tarun Kant ◽  
Sandeep S. Pendhari ◽  
Yogesh M. Desai

An attempt is made here to devise a new methodology for an integrated stress analysis of laminated composite plates wherein both in-plane and transverse stresses are evaluated simultaneously. The method is based on the governing three-dimensional (3D) partial differential equations (PDEs) of elasticity. A systematic procedure is developed for a case when one of the two in-plane dimensions of the laminate is considered infinitely long (y direction) with no changes in loading and boundary conditions in that direction. The laminate could then be considered in a two-dimensional (2D) state of plane strain in x-z plane. It is here that the governing 2D PDEs are transformed into a coupled system of first-order ordinary differential equations (ODEs) in transverse z direction by introducing partial discretization in the finite inplane direction x. The mathematical model thus reduces to solution of a boundary value problem (BVP) in the transverse z direction in ODEs. This BVP is then transformed into a set of initial value problems (IVPs) so as to use the available efficient and effective numerical integrators for them. Through thickness displacement and stress fields at the finite element discrete nodes are observed to be in excellent agreement with the elasticity solution. A few new results for cross-ply laminates under clamped support conditions are also presented for future reference and also to show the generality of the formulation.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 236
Author(s):  
Qingxiao Liang ◽  
Tianpeng Zhang ◽  
Chunrun Zhu ◽  
Yunbo Bi

Riveting is the most commonly used connection method in aircraft assembly, and its quality has a crucial effect on the fatigue performance of aircraft. Many factors affect the riveting quality, among which the influence of the riveting angle and direction is not clear. In this paper, a three-dimensional finite element model of single-rivet lap joints is established and verified by the driven head geometry and the riveting force data obtained from the riveting experiments. Then, by adjusting the angle and direction of the punch in the finite element model, the riveting process is simulated at the angles of 0°, 1°, 2°, and 3° and the directions of 0° and 180° to investigate the deformation of the lap joints, the stress distribution around the hole, and the stress distribution of the rivet. Finally, the fatigue tests of the single-rivet lap joints are performed and the influence of the riveting angle and direction on the connection quality and fatigue performance of the riveting joints is analyzed.


Sign in / Sign up

Export Citation Format

Share Document