Deburring of Sheet Metal by Barrel Finishing

2007 ◽  
Vol 344 ◽  
pp. 193-200 ◽  
Author(s):  
Alberto Boschetto ◽  
Armando Ruggiero ◽  
Francesco Veniali

In sheet metal processes the burrs cannot be completely eliminated during the process but can be minimized by optimization of the process parameters. Hence the deburring often becomes an essential secondary operation. Most of the deburring operations are hand-made and therefore several manufacturers tend to eliminate these tedious and labor-intensive operations due to time and cost issues. Moreover, clamping problems can arise which, together with the deburring forces, can induce dimension alterations and local deformations, particularly for thin sheets. Barrel finishing is an old technique commonly used to improve the surface roughness of complicated parts, but can find interesting applications also in the deburring. Aim of this work is to present an experimental investigation on the deburring of sheet metal performed by barreling. A technological model has been developed in order to assess the height of the burr as a function of the initial burr and of the working time.

2019 ◽  
Vol 13 (2) ◽  
pp. 4911-4927
Author(s):  
Swagatika Mohanty ◽  
Srinivasa Prakash Regalla ◽  
Yendluri Venkata Daseswara Rao

Product quality and production time are critical constraints in sheet metal forming. These are normally measured in terms of surface roughness and forming time, respectively. Incremental sheet metal forming is considered as most suitable for small batch production specifically because it is a die-less manufacturing process and needs only a simple generic fixture. The surface roughness and forming time depend on several process parameters, among which the wall angle, step depth, feed rate, sheet thickness, and spindle speed have a greater impact on forming time and surface roughness. In the present work, the effect of step depth, feed rate and wall angle on the surface roughness and forming time have been investigated for constant 1.2 mm thick Al-1100 sheet and at a constant spindle speed of 1300 rpm. Since the variable effects of these parameters necessitate multi-objective optimization, the Taguchi L9 orthogonal array has been used to plan the experiments and the significance of parameters and their interactions have been determined using analysis of variance (ANOVA) technique. The optimum response has been brought out using response surfaces. Finally, the findings of response surface method have been validated by conducting additional experiments at the intermediate values of the parameters and these results were found to be in agreement with the predictions of Taguchi method and response surface method.


2014 ◽  
Vol 979 ◽  
pp. 335-338
Author(s):  
Kittiphat Rattanachan ◽  
Chatchapol Chungchoo

The single point incremental forming process (SPIF) are suited for sheet metal prototyping, because it is a low cost production process that produces sheet metal part without any used of die, and easy to adjust the part’s geometry by change toolpath. But the quality of forming parts is still in doubt. In some applications, such as mould cavity for rapid mould and the medical parts, in this case the inside surface roughness plays an importance role. In this paper, the SPIF process parameters that affected to the inner surface roughness were experimental studied. The investigated parameters are composing of tool feed rate, side overlap, depth step and tool radius. The 2k-p factorial experimental design was used to analyze the interaction between each parameter. The results showed that increasing feed rate and depth step decreased inner surface roughness. Reducing tool rotational speed and feed rate reduced inner surface roughness. So increasing depth step with decreasing side overlap reduced inner surface roughness. The large tool radius and lower side overlap improved inner surface roughness. The large tool radius and higher depth step improved inner surface roughness. And last, reducing tool rotational speed with larger tool radius, the inner surface roughness is decreased.


Mechanik ◽  
2017 ◽  
Vol 90 (3) ◽  
pp. 186-187 ◽  
Author(s):  
Rafał Świercz

The article presents statistical analysis of results experimental investigation of EDM process with graphene flakes in dielectric. The relations between surface roughness and process parameters have been determined.


Sign in / Sign up

Export Citation Format

Share Document