Effects of Alloying Elements on Fracture Properties of Niobium Stabilized Austenitic Steels at Elevated Temperature

2007 ◽  
Vol 345-346 ◽  
pp. 461-464
Author(s):  
Ji Hyun Yoon ◽  
Eui Pak Yoon ◽  
Bong Sang Lee

The present work is a further investigation into the effects of the carbon (C), nitrogen (N) and niobium (Nb) contents on then fracture properties of the Type 347 stainless steels at 316oC. 9 heats of systematically designed alloys were examined. Through SEM-EDS, TEM and XRD analyses, two kinds of precipitates, Nb(C,N), CrNbN were identified in the Type 347 steels with a high ratio of wt% N to wt% C, on the other hand only Nb(C,N)s were found in the Type 347 steels with a low ratio of wt% N to wt% C. The tearing moduli were decreased in the range of 52~60% as the carbon content increased from 0.03wt% to 0.05wt%. The tearing moduli were lowered by 52~59% in the alloys with a high nitrogen. It was deduced from the microstructure analysis results that the coarse Nb-rich precipitates control the fracture resistance of the Type 347 as they act as the potential sites for the nucleation of micro-voids.

Author(s):  
Masanori Ando ◽  
Nobuhiro Isobe ◽  
Nobuchika Kawasaki ◽  
Masayuki Sukekawa ◽  
Naoto Kasahara

In Japanese elevated temperature standard, creep considering design is required for all ferrite steels applied over 375°C and all austenitic stainless steels applied over 425°C regardless of the operating time. On the other hands, ASME Sec.III Subsection NH, RCC-MR and R5 provide the additional rules to determine the negligible creep range. In those standards, each material is evaluated as non-creep considering design region, although there are varieties of applicable materials and the rules to settle the negligible creep range in each standard. 316FR and Mod.9Cr-1Mo are candidate materials of Japan sodium-cooled fast reactor (JSFR), and those high creep resistant properties extend the negligible creep damage area over the conventional temperature limits. Extension of non-creep design area widens design windows and simplifies the creep analysis procedure. To reply those requirements, authors already proposed original negligible criterion and discussed about it. In this paper, we recall the backgrounds of the negligible creep criterion which have already been proposed. Then the negligible creep criterion and relating property in each standard were compared. For estimating the evaluation procedure of each criterion, the common material properties used in “Elevated Temperature Structural Design Guide for Commercialized Fast Reactor (FDS)” were applied to each standard’s criteria. All standards have the negligible creep curves/regions for type 18Cr-8Ni steels and type 18Cr-12Ni-2.5Mo steels, although ASME Sec.III Subsection NH defines just the criteria of negligible creep for the rule of inelastic strain limits. On the diagram of temperature-negligible creep time, the negligible creep curves of 316L(N)(1S) in RCC-MR and R5 exist between those of SUS316 and 316FR in FDS. The negligible creep regions defined in all standards are similar for austenitic stainless steels, although those criteria are different. Comparison of the negligible creep curves by each criterion with FDS’s material properties indicated that the criterion in FDS provides the most conservative curve. In case of Mod.9Cr-1Mo steel, FDS and R5 provide relationship between temperatures and time for estimating the negligible creep time. ASME Sec. III Subsection NH provides only procedures and has no practical allowable values, and RCC-MR doesn’t have the negligible creep curve. Comparison of the negligible creep curves in each criterion with FDS’s material properties indicated that FDS’s criterion allows the longest negligible creep. The negligible creep criteria in ASME Sec.III Subsection NH, RCC-MR and R5 are not practicable for Mod.9Cr-1Mo. On the other hands, FDS criterion raises the temperature limits from conventional 375°C to about 425°C even when the components designed lifetime is 60years. Sensitivities to the difference of criteria and material properties were discussed and concluded that negligible creep curve is strongly dependent on the combination of criteria and material properties. Some evaluations proved that the negligible creep curves in FDS are moderately conservative and practicable.


1997 ◽  
Vol 473 ◽  
Author(s):  
David R. Clarke

ABSTRACTAs in other engineered structures, fracture occasionally occurs in integrated microelectronic circuits. Fracture can take a number of forms including voiding of metallic interconnect lines, decohesion of interfaces, and stress-induced microcracking of thin films. The characteristic feature that distinguishes such fracture phenomena from similar behaviors in other engineered structures is the length scales involved, typically micron and sub-micron. This length scale necessitates new techniques for measuring mechanical and fracture properties. In this work, we describe non-contact optical techniques for probing strains and a microscopic “decohesion” test for measuring interface fracture resistance in integrated circuits.


Alloy Digest ◽  
2006 ◽  
Vol 55 (1) ◽  

Abstract CLC 18.10LN is an austenitic stainless steel with 18% Cr, 9.5% Ni, and 0.14% N to provide good corrosion resistance at strengths above the other low-carbon stainless steels. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, machining, and joining. Filing Code: SS-950. Producer or source: Industeel USA, LLC.


Alloy Digest ◽  
1982 ◽  
Vol 31 (5) ◽  

Abstract UNILOY 430 is a medium-chromium (17%) non-hardening, ferritic stainless steel. Of the AISI 400 series stainless steels, Uniloy 430 most nearly resembles the 18% chromium-8% nickel stainless steels in fabrication and service. It has excellent resistance to corrosion and good resistance to elevated-temperature scaling. Its many uses include architectural trim, nitric acid storage tanks and kitchen appliances. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-408. Producer or source: Cyclops.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Matthias Bruchhausen ◽  
Gintautas Dundulis ◽  
Alec McLennan ◽  
Sergio Arrieta ◽  
Tim Austin ◽  
...  

A substantial amount of research effort has been applied to the field of environmentally assisted fatigue (EAF) due to the requirement to account for the EAF behaviour of metals for existing and new build nuclear power plants. We present the results of the European project INcreasing Safety in NPPs by Covering Gaps in Environmental Fatigue Assessment (INCEFA-PLUS), during which the sensitivities of strain range, environment, surface roughness, mean strain and hold times, as well as their interactions on the fatigue life of austenitic steels has been characterized. The project included a test campaign, during which more than 250 fatigue tests were performed. The tests did not reveal a significant effect of mean strain or hold time on fatigue life. An empirical model describing the fatigue life as a function of strain rate, environment and surface roughness is developed. There is evidence for statistically significant interaction effects between surface roughness and the environment, as well as between surface roughness and strain range. However, their impact on fatigue life is so small that they are not practically relevant and can in most cases be neglected. Reducing the environmental impact on fatigue life by modifying the temperature or strain rate leads to an increase of the fatigue life in agreement with predictions based on NUREG/CR-6909. A limited sub-programme on the sensitivity of hold times at elevated temperature at zero force conditions and at elevated temperature did not show the beneficial effect on fatigue life found in another study.


1998 ◽  
Vol 05 (01) ◽  
pp. 315-320 ◽  
Author(s):  
C. Muggelberg ◽  
M. R. Castell ◽  
G. A. D. Briggs ◽  
D. T. Goddard

The structure of the UO 2+x (111) surface has been investigated by elevated temperature STM. Images of atomic terraces reveal two different types of surface termination. One of them corresponds to the stoichiometric UO 2 (111) surface and can be resolved atomically in empty state images above ~ 1.6 V sample bias. The observed (1 × 1) ordering is thought to be due to uranium states because its occurrence corresponds to the bottom of the empty uranium 5f band. On these terraces mobile oxygen forms a local [Formula: see text] superstructure. The other terrace type observed on top of the UO 2+x (111) surface is thought to be a phase of a higher uranium oxide which has grown epitaxially.


Sign in / Sign up

Export Citation Format

Share Document