scholarly journals Bayesian Approach to Condition Monitoring of PRC Bridges

2007 ◽  
Vol 347 ◽  
pp. 227-232 ◽  
Author(s):  
Daniele Zonta ◽  
Matteo Pozzi ◽  
Paolo Zanon

This paper presents a damage detection procedure based on Bayesian analysis of data recorded by permanent monitoring systems as applied to condition assessment of Precast Reinforced Concrete (PRC) bridges. The concept is to assume a set of possible condition states of the structure, including an intact condition and various combinations of damage, such as failure of strands, cover spalling and cracking. Based on these states, a set of potential time response scenarios is evaluated first, each described by a vector of random parameters and by a theoretical model. Given the prior distribution of this vector, the method assigns posterior probability to each scenario as well as updated probability distributions to each parameter. The effectiveness of this method is illustrated as applied to a short span PRC bridge, which is currently in the design phase and will be instrumented with a number of fiber-optic long gauge-length strain sensors. A Finite Element Model is used to simulate the instantaneous and time-dependent behavior of the structure, while Monte Carlo simulations are performed to numerically evaluate the evidence functions necessary for implementation of the method. The ability of the method to recognize damage is discussed.

Author(s):  
Kerem Gurses ◽  
Bradley J. Buckman ◽  
Edward J. Park

This paper presents a novel feedback sensing approach for actively suppressing vibrations of a single-link flexible manipulator. Slewing of the flexible link by a rotating hub induces vibrations in the link that persist long after the hub stops rotating. These vibrations are suppressed through a combined scheme of PD-based hub motion control and proposed piezoelectric (PZT) actuator control, which is a composite linear and velocity feedback controller. Lyapunov approach was used to synthesize the controller based on a finite element model of the system. Its realization was possible due to the availability of both linear and angular velocity feedback provided by a unique, commercially-available fiber optic curvature sensor array, called ShapeTape™. It is comprised of an array of fiber optic curvature sensors, laminated on a long, thin ribbon tape, geometrically arranged in such a way that, when it is embedded into the flexible link, the bend and twist of the link’s centerline can be measured. Experimental results show the effectiveness of the proposed approach.


2021 ◽  
Vol 27 (4) ◽  
pp. 04021040
Author(s):  
Alain Rivero ◽  
Philippe Vanheeghe ◽  
Hannes Gräbe ◽  
Emmanuel Duflos

2018 ◽  
Vol 4 (2) ◽  
pp. 1 ◽  
Author(s):  
Angelica Campigotto ◽  
Stephane Leahy ◽  
Ayan Choudhury ◽  
Guowei Zhao ◽  
Yongjun Lai

A novel, inexpensive, and easy-to-use strain sensor using polydimethylsiloxane (PDMS)  was developed. The sensor consists of a microchannel that is partially filled with a coloured liquid and embedded in a piece of PDMS. A finite element model was developed to optimize the geometry of the microchannel to achieve higher sensitivity. The highest gauge factor that was measured experimentally was 41. The gauge factor was affected by the microchannel’s square cross-sectional area, the number of basic units in the microchannel, and the inlet and outlet configuration. As a case study, the developed strain sensors were used to measure the rotation angle of the wrist and finger joints.


2012 ◽  
Vol 20 (4) ◽  
pp. 257-263
Author(s):  
Hiroyuki Okazaki

Summary In [14] we formalized probability and probability distribution on a finite sample space. In this article first we propose a formalization of the class of finite sample spaces whose element’s probability distributions are equivalent with each other. Next, we formalize the probability measure of the class of sample spaces we have formalized above. Finally, we formalize the sampling and posterior probability.


2020 ◽  
Vol 54 (6) ◽  
pp. 77-83
Author(s):  
David G. Aubrey ◽  
Jennifer Wehof ◽  
Stephen O'Malley ◽  
Rajai Aghabi

AbstractFloating LiDAR systems (FLS) and other moored environmental monitoring systems are used extensively for wind and environmental assessments in offshore wind projects. In addition, wave energy converters (WECs) are being evaluated for more extensive use in coastal and deeper waters, most of which also require anchoring to the seabed. Since these systems must be moored, heavy anchors and typically heavy chain are used to secure the mooring and measurement/WEC buoy to the seabed. Disadvantages of present mooring technology include 1) damage to the seabed and benthic communities in vicinity of the mooring, as chain sweeps over the sea bottom; 2) an unnecessarily large watch circle at the water's surface; 3) slightly increased likelihood of marine mammal entanglement; 4) mooring damage from nearby fishing activity; and 5) likelihood of mooring failure due to self-entanglement within the mooring itself. This study presents an alternative mooring using mechanically compliant, elastomeric hoses to connect the buoyed system to the bottom anchor. Modeling the two mooring types with a typical buoy used in wind resource assessments shows a significant decrease in anchor drag area and surface watch circle with the use of the elastomeric hose versus the traditional chain and polyethylene line mooring. The hose also is equipped with copper conductors and/or fiber-optic conductors, providing power and data transmission between the bottom and the surface. For WEC solutions, the elastomeric hose provides similar benefits as for FLS and environmental monitoring systems, with the added advantage of being able to transmit power to the seafloor for distribution. For one WEC application, we have developed an elastomeric solution containing not only larger copper conductors to enable power transmission but also fiber-optic conductors to permit data transfer from a garage mounted on the bottom (servicing an autonomous underwater vehicle [AUV] or unmanned underwater vehicle [UUV], for instance) to the surface buoy for onward transmission to shore.


Sign in / Sign up

Export Citation Format

Share Document