An Interval Uncertainty Based Method for Damage Identification

2007 ◽  
Vol 347 ◽  
pp. 551-556 ◽  
Author(s):  
S. Gabriele ◽  
C. Valente ◽  
F. Brancaleoni

The problem of damage identification in presence of uncertainties is faced up in the framework of interval analysis. A method previously developed by the authors in the context of model updating and global minimization for dynamic problems is applied to identify the damage in framed structures. The inclusion property of the interval analysis is exploited to find the bounds of the physical solutions. Model parameters, experimental measures and modelling errors are considered as possible sources of uncertainty. The advantages of the interval approach are discussed through numerical simulations involving the different kind of uncertainties.

Author(s):  
Paul D. Arendt ◽  
Wei Chen ◽  
Daniel W. Apley

Model updating, which utilizes mathematical means to combine model simulations with physical observations for improving model predictions, has been viewed as an integral part of a model validation process. While calibration is often used to “tune” uncertain model parameters, bias-correction has been used to capture model inadequacy due to a lack of knowledge of the physics of a problem. While both sources of uncertainty co-exist, these two techniques are often implemented separately in model updating. This paper examines existing approaches to model updating and presents a modular Bayesian approach as a comprehensive framework that accounts for many sources of uncertainty in a typical model updating process and provides stochastic predictions for the purpose of design. In addition to the uncertainty in the computer model parameters and the computer model itself, this framework accounts for the experimental uncertainty and the uncertainty due to the lack of data in both computer simulations and physical experiments using the Gaussian process model. Several challenges are apparent in the implementation of the modular Bayesian approach. We argue that distinguishing between uncertain model parameters (calibration) and systematic inadequacies (bias correction) is often quite challenging due to an identifiability issue. We present several explanations and examples of this issue and bring up the needs of future research in distinguishing between the two sources of uncertainty.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Zheng ◽  
Yi Yu

The vibration-based structural health monitoring has been traditionally implemented through the deterministic approach that relies on a single model to identify model parameters that represent damages. When such approach is applied for truss bridges, truss joints are usually modeled as either simple hinges or rigid connections. The former could lead to model uncertainties due to the discrepancy between physical configurations and their mathematical models, while the latter could induce model parameter uncertainties due to difficulty in obtaining accurate model parameters of complex joint details. This paper is to present a new perspective for addressing uncertainties associated with truss joint configurations in damage identification based on Bayesian probabilistic model updating and model class selection. A new sampling method of the transitional Markov chain Monte Carlo is incorporated with the structure’s finite element model for implementing the approach to damage identification of truss structures. This method can not only draw samples which approximate the updated probability distributions of uncertain model parameters but also provide model evidence that quantify probabilities of uncertain model classes. The proposed probabilistic framework and its applicability for addressing joint uncertainties are illustrated and examined with an application example. Future research directions in this field are discussed.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


Author(s):  
Chin-Hsiung Loh ◽  
Min-Hsuan Tseng ◽  
Shu-Hsien Chao

One of the important issues to conduct the damage detection of a structure using vibration-based damage detection (VBDD) is not only to detect the damage but also to locate and quantify the damage. In this paper a systematic way of damage assessment, including identification of damage location and damage quantification, is proposed by using output-only measurement. Four level of damage identification algorithms are proposed. First, to identify the damage occurrence, null-space and subspace damage index are used. The eigenvalue difference ratio is also discussed for detecting the damage. Second, to locate the damage, the change of mode shape slope ratio and the prediction error from response using singular spectrum analysis are used. Finally, to quantify the damage the RSSI-COV algorithm is used to identify the change of dynamic characteristics together with the model updating technique, the loss of stiffness can be identified. Experimental data collected from the bridge foundation scouring in hydraulic lab was used to demonstrate the applicability of the proposed methods. The computation efficiency of each method is also discussed so as to accommodate the online damage detection.


Author(s):  
Natalia Sabourova ◽  
Niklas Grip ◽  
Ulf Ohlsson ◽  
Lennart Elfgren ◽  
Yongming Tu ◽  
...  

<p>Structural damage is often a spatially sparse phenomenon, i.e. it occurs only in a small part of the structure. This property of damage has not been utilized in the field of structural damage identification until quite recently, when the sparsity-based regularization developed in compressed sensing problems found its application in this field.</p><p>In this paper we consider classical sensitivity-based finite element model updating combined with a regularization technique appropriate for the expected type of sparse damage. Traditionally, (I), &#119897;2- norm regularization was used to solve the ill-posed inverse problems, such as damage identification. However, using already well established, (II), &#119897;l-norm regularization or our proposed, (III), &#119897;l-norm total variation regularization and, (IV), general dictionary-based regularization allows us to find damages with special spatial properties quite precisely using much fewer measurement locations than the number of possibly damaged elements of the structure. The validity of the proposed methods is demonstrated using simulations on a Kirchhoff plate model. The pros and cons of these methods are discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document