Fatigue Properties of Austenitic Stainless Steel with Circumferential Notch

2007 ◽  
Vol 353-358 ◽  
pp. 243-247
Author(s):  
Nobusuke Hattori ◽  
Shinichi Nishida ◽  
Y. Yano ◽  
J. Ding

The effect of stress concentration factor on the fatigue properties of typical austenitic stainless steel SUS304 have been investigated using the circumferentially notched specimens. The notch of specimens has six kinds of radii, i.e. ρ = ∞ (i.e. plain specimen), 2.0, 1.0, 0.6, 0.3, and 0.1 mm with constant notch depth (t=0.2mm). Though the fatigue cracks in the specimens with a blunt notch initiate at one point, those in the specimens with a sharp notch initiate at several points. There exist the slip bands in the surface of the specimen under the stress amplitude of fatigue limit by 1×107 cycles, and do not exist the non-propagating micro-cracks in all kinds of the specimens. Furthermore, it has been found that notch sensitivity of austenitic stainless steels is higher than that of a typical plain carbon steels under the higher stress concentration factor region.

Author(s):  
Naoaki Nagaishi ◽  
Michio Yoshikawa ◽  
Saburo Okazaki ◽  
Hisao Matsunaga ◽  
Junichiro Yamabe ◽  
...  

Fatigue tests were performed using three types of round-bar specimens of Type 304, meta-stable, austenitic stainless steel. The specimens had circumferential notch with stress concentration factors, Kt, of 2, 3 or 6.6. Load controlled fatigue tests were conducted at stress ratio, R, of 0.1 and −1 in ambient air at room temperature. At R of 0.1, fatigue life was decreased with an increase in the stress concentration factor. Conversely, at R of −1, the stress concentration factor had little influence on the fatigue life. To understand the mechanism of the stress ratio effect, local deformation behavior at and beneath the notch root during the fatigue test was computed by means of finite element analysis considering that the plastic constitutive model describes the cyclic stress-strain response.


2011 ◽  
Vol 117-119 ◽  
pp. 821-823
Author(s):  
Gao Lu ◽  
Wen Yan Wang ◽  
Jing Pei Xie

This paper studies the application in different cast iron brake drum the thermal fatigue properties of materials. The results show that the stress concentration factor of grey cast iron, hot fatigue crack initiation, low intensity, and easy to expand, organization crack initiation poor stability, antioxidant ability is poor, thermal fatigue is poorer. 35% of vermicular cast iron and of ductile iron high strength, toughness, good stress concentration factor small, thermal fatigue is well.


2015 ◽  
Vol 664 ◽  
pp. 104-110
Author(s):  
Ying Liu ◽  
Dong Jie Li ◽  
Xiao Hong Li

The research focus on the material of the stainless steel thin conduit in aircraft, named 1Cr18Ni9Ti , and the TIG weld joint of which was investigated to analysis the fatigue properties. The fracture mechanics was used to analysis the crack initiation life and crack propagation life, and the fatigue surface was characterized with scanning electron microscope (SEM). The experimental and analytical results show that, the origin position of fatigue crack is the surface of the conduit. The stress concentration at the weld toe, the crystal structure is not uniform and Stress concentration in the heat affected zone (HAZ) and fusion line, so the fatigue cracks are easily generated in these locations. Delta K increases to a certain value, the HAZ has become one of the most dangerous position. The crack initiation life of HAZ in the total fatigue life is far higher than the proportion of crack propagation life.


1936 ◽  
Vol 3 (1) ◽  
pp. A15-A22 ◽  
Author(s):  
R. E. Peterson ◽  
A. M. Wahl

Abstract This paper reports the results of a study of some two- and three-dimensional cases of stress distribution with particular reference to shafts having fillets or transverse holes, these being of considerable practical importance. To determine the stress-concentration factor kt in such cases, strain measurements were made, using a specially developed extensometer with a gage length of 0.1 in. The results of these strain measurements indicate that for shaft fillets in bending (three-dimensional case) the stress-concentration factor kt is little different from the values obtained photoelastically on flat specimens having the same r/d ratio (a two-dimensional case). A comparison of these values of kt (both for shafts with fillets and with transverse holes), with data from fatigue tests, leads to the following observations: (1) In some cases fatigue results are quite close to theoretical stress-concentration values. (2) Fatigue results for alloy steels and quenched carbon steels are usually closer to theoretical values than are the corresponding fatigue results for carbon steels not quenched. (3) With decrease in size of specimen, the reduction in fatigue strength due to a fillet or hole becomes somewhat less; and for very small fillets or holes the reduction in fatigue strength is comparatively small. (4) Sensitivity factors determined for small specimens should not be applied to the design of machine parts regardless of size.


Author(s):  
Takashi Iijima ◽  
Hirotoshi Enoki ◽  
Junichiro Yamabe ◽  
Mitsuo Kimura ◽  
Bai An

Abstract SSRT and fatigue life tests of SUS301 austenitic stainless steel were performed to examine the effect of hydrogen on the mechanical properties. Ni content of SUS301, 6.00–8.00 mass%, is lower than that of SUS304 in JIS standard for austenitic stainless steels. In the case of SSRT tests, specimens with and without hydrogen charging were tested in laboratory air at room temperature (R.T.), −45 °C, and −80 °C. The 0.2% offset yield strength (Ys) of the hydrogen charged specimens was less than 300 MPa in the tested temperature range. The tensile strength (Ts) and total elongation (El) of hydrogen charged specimens decreased remarkably. With decreasing testing temperature, fracture surface facet of the hydrogen charged specimens became dominant. Therefore, the effect of hydrogen on the tensile properties of SUS301 is supposed to be large. Specimens with and without hydrogen charging were fatigued in laboratory air at R.T., and specimens without hydrogen charging were fatigued in 100 MPa hydrogen gas atmosphere at R.T. Number of cycles (Nf) at finite fatigue life region of the hydrogen charged specimens and of the specimens tested in hydrogen gas were two orders shorter than that of the specimens tested in air. However, the finite fatigue life region of the hydrogen charged specimens and the specimens tested in hydrogen gas showed a different profile. Additionally, ferrite equivalents of all fatigue tested specimens and fatigued fracture surface morphology suggested the fatigue fracture mechanism between the hydrogen charged specimens tested in air and the non-charged specimens tested in 100 MPa hydrogen gas seems to be different. Therefore, further investigations are required to clear this difference.


Sign in / Sign up

Export Citation Format

Share Document