Influences of Ultrasonic Assistance in High Speed Lapping of Nano ZTA Engineering Ceramic on the Surface Machining Quality

2007 ◽  
Vol 359-360 ◽  
pp. 355-359 ◽  
Author(s):  
Feng Jiao ◽  
Bo Zhao ◽  
Chuan Shao Liu ◽  
Xun Sheng Zhu

Ultrasonic aided high speed lapping with solid abrasive material was put forward aimed at the precision finishing of nano ZTA engineering ceramic. Through theoretical analysis and contrast lapping experiments, the influences of ultrasonic assistance on the surface machining quality were clarified. Research results show that the maximum undeformed chip thickness in ultrasonic aided lapping is smaller than that in conventional lapping under the same conditions; ultrasonic assistance is beneficial to enlarging the range of ductile lapping regime and improving the surface quality of nano ZTA ceramic; with the application of ultrasonic vibration, smaller surface roughness and more regular surface profile can be obtained.

Author(s):  
Adel Abidi ◽  
Sahbi Ben Salem ◽  
Mohamed Athmane Yallese

Among advanced cutting methods, High Speed Milling (HSM) is often recommended to improve the productivity and to reduce the costs of machining parts. As every cutting process, HSM is characterized by some defects like surface roughness and delamination are the main defects generated in composite materials. The aim of this experimental work is the studying of the machining quality of woven Carbon fiber reinforced plastics (CFRP) using the HSM technology. Experiments were done using different machining parameters combinations to make opened holes in CFRP laminates. This study investigated the effect of cutting speed, orbital feed speed, hole diameter on the delamination defect and surface roughness responses generated in the drilled holes. The design of experimental tests was generated using the approach of Central Composite Design (CCD). The characterization of these responses was treated with the Analysis of variance (ANOVA) and Response surface methodology (RSM). Results showed that the surface roughness is highly affected by the orbital feed speed (F) with contribution of 22.45%. The delamination factor at entry and exit of holes is strongly influenced by the hole diameter D (25.97% and 57.43%) respectively. The developed model equations gave a good correlation between the empirical and predicted results. The optimization of the milling parameters was treated using desirability function to minimize the surface roughness (Ra) and the delamination factor simultaneously.


2009 ◽  
Vol 416 ◽  
pp. 588-592
Author(s):  
Feng Jiao ◽  
Bo Zhao ◽  
Yong Zhao ◽  
Tai Ping Li

Surface phase structure has an important effect on the surface machining quality. The surface phase transition characteristics of ZrO2 and ZTA ceramics under different machining methods were tested by X-ray diffraction in the paper. Through the qualitative and quantitative phase analyses, the influences of several different precision machining methods on the phase transitions in the machined surface were studied. Research results show that there are more transitions from tetragonal phase ZrO2 to monoclinic phase ZrO2 in the high speed grinding surface; because of the high-frequency vibration of lapping tool in ultrasonic lapping, the stress condition in the grinding area can be improved and the stable tetragonal phase ZrO2 in the ultrasonic lapped surface is easy to get. The research conclusions have important significance on analyzing the surface residual stress and improving the surface machining quality of engineering ceramics.


2004 ◽  
Vol 471-472 ◽  
pp. 542-546
Author(s):  
Song Zhang ◽  
Xing Ai ◽  
Wei Xiao Tang ◽  
J.G. Liu

High-speed machining has become mainstream in machining manufacturing industry. In industries such as moldmaking and aerospace, it has become the norm rather the exception. The centrifugal force increases as the square of the speed. At rotational spindle speeds of 6,000 r/min and higher however, centrifugal force from unbalance becomes a damaging factor and it reduces the life of the spindle and the tool, as well as diminishes the quality of the finished product. Under high rotational speed, good balance becomes issue. High-speed machining experimental results shown that a well-balanced tool/toolholder assembly could obviously improve machining quality, extend tool life and shorten downtime for spindle system maintenance etc.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Van Hirtum ◽  
X. Pelorson

Experiments on mechanical deformable vocal folds replicas are important in physical studies of human voice production to understand the underlying fluid–structure interaction. At current date, most experiments are performed for constant initial conditions with respect to structural as well as geometrical features. Varying those conditions requires manual intervention, which might affect reproducibility and hence the quality of experimental results. In this work, a setup is described which allows setting elastic and geometrical initial conditions in an automated way for a deformable vocal fold replica. High-speed imaging is integrated in the setup in order to decorrelate elastic and geometrical features. This way, reproducible, accurate and systematic measurements can be performed for prescribed initial conditions of glottal area, mean upstream pressure and vocal fold elasticity. Moreover, quantification of geometrical features during auto-oscillation is shown to contribute to the experimental characterization and understanding.


Author(s):  
Nguyen Duy Canh ◽  
Nguyen Van Canh ◽  
Pham Xuan Hong ◽  
Nguyen Ngoc Hue ◽  
Tran Dinh Duy

Sign in / Sign up

Export Citation Format

Share Document