A Comparative Research on Thermal Stresses Calculated from Different Element Models of a Concrete Continuous Box-Girder Bridge

2008 ◽  
Vol 400-402 ◽  
pp. 923-928
Author(s):  
Feng Xu ◽  
Bo Wang ◽  
Hai Long Zhang

According to the definition about the positive and negative gradient temperature distribution of structural cross section in the Chinese bridge design specification of General Code for Design of Highway Bridge and Culverts (JTG D60-2004), same temperature loads are applied to beam model and solid model of a typical there-span prestressed concrete continuous box-girder bridge to compare the numerical results of thermal stresses calculated from the two finite element models. The beam model is built through professional software Doctor Bridge that is prevailing in China for structural static analysis of bridge design, while the solid model is built using ANSYS. Between the two models, the numerical results of total thermal stress regarded to be added up with self-restrained stress and secondary stress are compared. The results from solid model are found to be much more conservative than from element model. The identity and diversity of the two series of results and the reasons for the generation of the diversity are expounded. It is recommended that the thermal stress calculated from solid model be better to be taken into account in a design so as to examine or amend the results that calculated through the professional software based on bar system FEM theory.

Author(s):  
Dong Xu ◽  
Xiangyong Duanmu ◽  
Yafan Zhou

<p>In order to promote the application of steel-concrete composite structure in mountainous areas in China, a conceptual design for a PC continuous rigid frame box-girder bridge with corrugated steel webs and main span of 300 m was performed in the present paper. The combined corrugated steel web was proposed to increase the compressive area and improve the stability performance; thus, the self-weight of the composite box-girder bridge is significantly reduced. Flexural capacity of the whole section had been calculated with a single-beam model for the ultimate limit state (ULS). For the service limit state (SLS) design, the calculation for the composite box-girder bridge was conducted with the spatial grid model (SGM), from which 27 complete checking stresses in three layers (i.e. outside, inside and middle planes) of concrete plates and steel webs in every cross-section could be obtained. The stress history under construction stage was incorporated into the results obtained by SGM. Moreover, the stress states and stability performance for the composite box-girder bridge constructed were evaluated. The present investigation can provide references for the design and construction of the composite box-girder bridge with corrugated steel webs for long spans.</p>


2014 ◽  
Vol 578-579 ◽  
pp. 642-647
Author(s):  
Ya Feng Gong ◽  
Xiao Bo Sun ◽  
Huan Li Wang ◽  
Hai Peng Bi

The mechanical properties of cross beam in continuous box girder bridge can be obtained through analyzing the finite element model and measured data of bridge. A new simplified calculation method for cross beam is proposed in this paper, which is called modified shear method. Comparative analysis with traditional method is used to verify its feasibility and practicability.


2011 ◽  
Vol 63-64 ◽  
pp. 461-464
Author(s):  
Xue Gui ◽  
Jian Wei Song ◽  
Xing Nai Wang ◽  
Hong Jing Du

This paper summarizes a variety of designing and calculating methods of Small and Medium Single-box Multi-room Continuous Box Girder bridge system that used widly in bridge engineering in current. On the basis of careful research and comparison on a variety of designing methods, this paper proposes the advantages and disadvantages of these calculating methods in practical application of theory, proposes the important insights about the developing and perfection direction in the calculating methods, shows clearly the direction on the further research of the designing and calculating methods of the Small and Medium Single-box Multi-room Continuous Box Girder Bridge.


2013 ◽  
Vol 330 ◽  
pp. 872-877
Author(s):  
Yi Qiang Xiang ◽  
Li Si Liu ◽  
Shao Jun Li

Based on the results of experiment, this paper discusses about the updating and validation of accurate finite element model for damage identification of the steel-concrete composite box girder bridge. Taking a 5 meters long steel-concrete composite box girder bridge as the research object and the finite element model is established. By means of scale model test the updating of the accurate finite element model has been completed and validation is confirmed.


2013 ◽  
Vol 712-715 ◽  
pp. 1011-1017
Author(s):  
Ting Li ◽  
Xing Wang Sheng ◽  
Hua Shuai Zhang

A finite element study was performed to investigate the design method of the casual anchor skeleton at the closure of a PC continuous box girder bridge. Based on a finite element model of a certain four spans PC continuous box girder bridge, we found that the stresses of skeleton calculated with the finite model were 5 percent beyond those with the traditional analytic method. Besides, the tensile stresses increased 19 percent and the compressive ones were 14 percent decreased considered the vertical unbalance temperature and both increased 8 percent for the wind, which were totally ignored in the traditional analytic method. So, the traditional analytic method is inaccurate and unsafe for the casual anchor skeleton design, and the general temperature difference, the vertical unbalance temperature and the wind are better to be considered.


Sign in / Sign up

Export Citation Format

Share Document