Optimization of Cutting-Edge Truncation in Ductile-Mode Grinding of Optical Glass

2009 ◽  
Vol 404 ◽  
pp. 77-84
Author(s):  
Junichi Tamaki ◽  
Akihiko Kubo

The effect of cutting-edge truncation on the grinding mechanism of quartz glass as a hard and brittle material was investigated. From computer-aided grinding simulations and experiments on surface plunge grinding it was found that cutting-edge truncation decreases the ground-surface roughness and the maximum grain depth of cut; however, the maximum grain depth of cut approaches a constant value depending on the grinding wheel specifications. The alternative means of making the maximum grain depth of cut much smaller than this constant value is to increase the speed ratio. Cutting-edge truncation should be terminated at the optimum truncation depth to avoid the high grinding forces resulting from the flattening of cutting edges.

2011 ◽  
Vol 325 ◽  
pp. 60-65
Author(s):  
Haruhisa Sakamoto ◽  
Kyoko Nakamura ◽  
Yoshinori Sasaki ◽  
Shinji Shimizu

In this study, the determination method of the number of the effective cutting-edges had been proposed based on the measurements of working surface topography and the grinding force. Furthermore, its validity is made clear based on the topographical analysis of the ground surface roughness of pure copper, which is excellent in transcribing the working surface. From the results, the following are found out: The ground surface topography contains the periodical component, which is originated in the grinding and dressing conditions, on the fractal noise component. The cutting traces by each cutting-edge can be countable from the ground surface profile, and then, the number of the effective cutting-edges is identified at one line within the working surface. On the other hand, the number of the effective cutting-edges also can be identified based on the working surface, but, this method requires the determination of the typical grain shape. From the experiment, it is confirmed that the grain shape should be almost spherical for making the numbers of the effective cutting-edge identified from the working and ground surfaces equal.


2007 ◽  
Vol 359-360 ◽  
pp. 103-107
Author(s):  
Shi Chao Xiu ◽  
Chang He Li ◽  
Guang Qi Cai

Quick-point grinding is used to machine the round surface with super abrasive wheel at high grinding speed. Because it is point contact between the grinding wheel and the workpiece due to the point grinding angles in the process, the grinding model is different from the conventional cylindrical grinding in theory. Especially, the edge contact width between the wheel and the workpiece is not always equal to the thickness of the wheel, but rests with the depth of cut and the grinding angles greatly. The depth of cut has the effects on the micro-geometric properties especially the ground surface roughness by means of the variations of the edge contact width, the grinding force and heat in the process. Based on the theoretical studies on the surface roughness, the quick-point grinding experiments and the measures for the surface roughness were performed at different depth of cut. The effective mechanism of the depth of cut on the ground surface roughness was analyzed deeply. Some conclusions to influence surface roughness were also gained.


1999 ◽  
Author(s):  
Luis Nelson ◽  
H. Ali Razavi ◽  
Thomas Kurfess ◽  
Steven Danyluk

Abstract This paper reports on an experimental investigation and modeling results for the grinding-induced subsurface damage in gamma titanium aluminide (γ-TiAl). Grinding was carried out at various depths of cut, wheel and workpiece speeds with a friable diamond grinding wheel. The type/pattern and extent of the subsurface damage was determined by a bonded interface technique using optical microscopy and a surface laser profiler. The results show that the damage beneath the ground surface can be measured from the depth of a rumpled region that is identified with plastic deformation or shear/slip-fault deformation, distortion and microcracks. It was also determined that the depth of grinding-induced subsurface damage in the nearly fully lamellar γ-Ti-48Al microstructure ranges from 150 μm to 400 μm. The severity and depth of the subsurface damage was found to increase with an increase in grinding speed ratio and depth of cut.


2007 ◽  
Vol 364-366 ◽  
pp. 696-700
Author(s):  
Shi Chao Xiu ◽  
Suo Xian Yuan ◽  
Chang He Li ◽  
Guang Qi Cai

According to the analysis in theory, the model of quick-point grinding is different from conventional cylindrical grinding because it is point contact between the grinding wheel and the workpiece due to the point-grinding angles in two directions and the lower grain depth of cut in the process. Especially, the grinding speed has the great effects on the micro-geometry properties and the machining precision of the workpiece surface in the process. Based on the theoretical studies on the surface roughness, the grinding experiments and the measurements of the surface roughness at high grinding speeds were performed in quick-point grinding process. Furthermore, the influencing mechanism of the grinding speed on the ground surface roughness was analyzed. Some conclusions of the grinding parameters influencing precision machining and surface integrity were deduced.


2011 ◽  
Vol 325 ◽  
pp. 208-212 ◽  
Author(s):  
Hong Hua Su ◽  
Jiu Hua Xu ◽  
Yu Can Fu ◽  
Wen Feng Ding ◽  
Shuai Wang

The dressing methods of monolayer diamond tool have recently been developed increasingly because a substantial improvement of the ground surface roughness could be achieved with the dressed monolayer diamond tools. In this paper, a new dressing method was proposed, namely chemical-mechanical dressing of the diamond grits. Dressing experiments were carried out on the monolayer brazed diamond grinding wheel. The grit-tip distances from the base of wheel substrate were measured before and after dressing. Grinding experiments were conducted on K9 optical glass after each dressing interval. The roughness parameters of the ground surfaces were measured. The outcome of this attempt appeared highly encouraging, and the dressing of monolayer brazed diamond grinding wheel is effective with the chemical-mechanical dressing.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


2007 ◽  
Vol 329 ◽  
pp. 495-500
Author(s):  
Hang Gao ◽  
W.G. Liu ◽  
Y.G. Zheng

It is experimentally found that existing micro-holes or micro-concaves on the cemented carbide base surface of electroplated CBN wheel is one of important reasons to worsen the combining intensity of the electroplated abrasives layer with the grinding wheel base. It is well solved by sealing the holes or concaves with steam sealing method. Further more the electroplated CBN wheel with cemented carbide base for precision grinding of compressor cylinder vane slot is developed by optimizing the electroplating prescription and process. Productive grinding results show that the ground surface roughness, size precision and the wheel life have reached the advanced index of the same type of wheel imported.


Author(s):  
Abdalslam Darafon ◽  
Andrew Warkentin ◽  
Robert Bauer

This paper presents a new empirical model of the dressing process in grinding which is then incorporated into a 3D metal removal computer simulator to numerically predict the ground surface of a workpiece as well as the dressed surface of the grinding wheel. The proposed model superimposes a ductile cutting dressing model with a grain fracture model to numerically generate the resulting grinding wheel topography and workpiece surface. Grinding experiments were carried out using “fine”, “medium” and “coarse” dressing conditions to validate both the predicted wheel topography as well as the workpiece surface finish. For the grinding conditions used in this research, it was observed that the proposed dressing model is able to accurately predict the resulting workpiece surface finish for all dressing conditions tested. Furthermore, similar trends were observed between the predicted and experimentally-measured grinding wheel topographies when plotting the cutting edge density, average cutting edge width and average cutting edge spacing as a function of depth for all dressing conditions tested.


Sign in / Sign up

Export Citation Format

Share Document