Calculation of Effective Ground Depth of Cut by Means of Grinding Process Model

2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.

2012 ◽  
Vol 565 ◽  
pp. 52-57 ◽  
Author(s):  
Takazo Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In grinding operation, elastic deformations of the grinding machine and the grinding wheel induce a residual stock removal of workpiece. On the other hand, thermal expansions of the workpiece and the grinding wheel increase the depth of cut. Therefore, calculation of a ground depth of cut and/or the grinding time has to be considered by the elastic deformations and the thermal expansions. From such a viewpoint, in this study, grinding process model taking into account the elastic deformations and the thermal expansions was proposed. This paper aims to estimate the grinding time by means of the proposed grinding process model.


2014 ◽  
Vol 1017 ◽  
pp. 72-77
Author(s):  
Takazo Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In the grinding process, due to the elastic deformations of grinding machine and grinding wheel, the ground depth of cut is smaller than the applied depth of cut. Consequently, the ground depth of cut has to be controlled in spark-out grinding process. However, the cycle time in spark-out grinding process is not easy to be estimated. From such a viewpoint, in this study, using specific grinding force obtained by measured grinding force in the first spark-out pass, a calculating method of the real ground depth in continuous pass process is proposed. And, this method is experimentally evaluated.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2015 ◽  
Vol 68 (2) ◽  
pp. 229-238
Author(s):  
Hamilton Jose de Mello ◽  
Diego Rafael de Mello ◽  
Eduardo Carlos Bianchi ◽  
Paulo Roberto de Aguiar ◽  
Doriana M. D'Addona

AbstractThere has been a great advance in the grinding process by the development of dressing, lubri-refrigeration and other methods. Nevertheless, all of these advances were gained only for continuous cutting; in other words, the ground workpiece profile remains unchanged. Hence, it becomes necessary to study grinding process using intermittent cutting (grooved workpiece – discontinuous cutting), as little or no knowledge and studies have been developed for this purpose, since there is nothing found in formal literature, except for grooved grinding wheels. During the grinding process, heat generated in the cutting zone is extremely high. Therefore, plenty of cutting fluids are essential to cool not only the workpiece but also the grinding wheel, improving the grinding process. In this paper, grinding trials were performed using a conventional aluminum oxide grinding wheel, testing samples made of AISI 4340 steel quenched and tempered with 2, 6, and 12 grooves. The cylindrical plunge grinding was performed by rotating the workpiece on the grinding wheel. This plunge movement was made at three different speeds. From the obtained results, it can be observed that roughness tended to increase for testing sample with the same number of grooves, as rotation speed increased. Roundness error also tended to increase as the speed rotation process got higher for testing the sample with the same number of grooves. Grinding wheel wear enhanced as rotation speed and number of grooves increased. Power consumed by the grinding machine was inversely proportional to the number of grooves. Subsuperficial microhardness had no significant change. Micrographs reveal an optimal machining operation as there was no significant damage on the machined surface.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

This article presents a new model of the flat surface grinding process vibration conditions. The study establishes a particular analysis and comparison between the influence of the normal and tangential components of grinding forces on the vibration conditions of the process. The bifurcation diagrams are used to examine the process vibration conditions for the depth of cut and the cutting speed as the bifurcation parameters. The workpiece is considered to be rigid and the grinding wheel is modeled as a nonlinear two-degrees-of-freedom mass-spring-damper oscillator. To verify the model, experiments are carried out to analyze in the frequency domain the normal and tangential dynamic grinding forces. The results of the process model simulation show that the vibration condition is more affected by the normal component than the tangential component of the grinding forces. The results of the tested experimental conditions indicate that the cutting speed of 30 m/s can permit grinding at the depth of cut up to 0.02 mm without sacrificing the process of vibration behavior.


2019 ◽  
Vol 9 (7) ◽  
pp. 1363 ◽  
Author(s):  
Thi-Hong Tran ◽  
Xuan-Hung Le ◽  
Quoc-Tuan Nguyen ◽  
Hong-Ky Le ◽  
Tien-Dung Hoang ◽  
...  

This paper shows an optimization study on calculating the optimum replaced wheel diameter in internal grinding of stainless steel. In this work, the effects of the input factors, including the initial diameter, the grinding wheel width, the ratio between the length and the diameter of the work-pieces, the dressing depth of cut, the wheel life and the radial grinding wheel wear per dress on the optimum replaced grinding wheel diameter were considered. Also, the effects of cost components, including the cost of the grinding machine and the wheel cost were examined. Moreover, to estimate the influences of these parameters on the optimum replaced diameter, a simulation experiment was given and conducted by programming. From the results of the study, a regression equation was proposed to calculate the optimum replaced diameter.


2020 ◽  
Vol 977 ◽  
pp. 18-26
Author(s):  
Thi Hong Tran ◽  
Xuan Tu Hoang ◽  
Hong Ky Le ◽  
Quoc Tuan Nguyen ◽  
Thanh Tu Nguyen ◽  
...  

Grinding cost is an essential factor in a grinding process. In external cylindrical grinding, there has been an absence of various input grinding process parameters which have significant effects on the grinding cost. This paper presents an optimization of the grinding cost to determine the optimum exchanged grinding wheel diameter based on the seven input grinding parameters consisting of the initial grinding wheel diameter, the grinding wheel width, the wheel life, the radial grinding wheel wear per dress, the total depth of dressing cut, the machine tool hourly rate, and the grinding wheel cost. Combined with the screening experiments, the influence of the grinding parameters on the optimum exchanged grinding wheel diameter for the external cylindrical grinding process was examined. In addition, the effect of the interactions between the input grinding parameters was also evaluated. Finally, the regression equation for computing the optimum exchanged grinding wheel diameter was introduced. Therefore, the proposed model can be further applied for the external grinding process effectively.


2014 ◽  
Vol 3 (4) ◽  
pp. 484
Author(s):  
Tarik Tawfeek

This paper presents a study of grinding wheel-workpiece interference in external cylindrical plunge grinding processes. This is to study the effect of workpiece surface memory on the workpiece roundness error after grinding. The study has been carried out theoretically on a model simulating cylindrical grinding process. The model takes contact stiffness, grinding wheel and workpiece wear into consideration. The proposed model was sued to predict the normal grinding forces in cylindrical grinding as a function of the previous height and number of waves of the initial profile.The new model has been validated by conducting experiments on a cylindrical grinding machine. Results indicate that the proposed model shows a good agreement with the experimental data obtained.The results of experiments indicate that the proposed modeling method is both feasible and reliable. The results showed that the theoretical model was effective studying the output of cylindrical grinding process. Normal grinding force, vibration level, and roundness error in cylindrical plunge grinding processes are dependent on the workpiece surface memory. Keywords: Plunge Grinding, Modeling, Roundness Error, Surface Memory.


Author(s):  
Matthias Steffan ◽  
Franz Haas ◽  
Thomas Spenger

The RPM-Synchronous Grinding process offers new possibilities to generate defined macro- and micro-geometries on workpieces. With present technology, various macroscopic non-circular geometries must be grinded subsequently in an oscillating process where the X-axis is coupled with the rotary workpiece-spindle axis. Such workpieces can be machined in an ordinary plunge grinding process by implementing the approach of RPM-Synchronous Non-Circular Grinding. Therefore, the workpiece and the grinding wheel rotational rates are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a unique machine tool for basic research and control concept development for RPM-Synchronous Grinding (RSG). The machine was especially designed for this RSG technology. Highest revolution rates on the workpiece spindle are mandatory for its success. The grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for producing the non-circular geometry on the workpiece efficiently. A control algorithm adapts this process step, which uses acquired data from a piezoelectric three-component force sensor fixed at the tailstock-side of the grinding machine. For finishing, a grinding wheel with fine grain size is suited. This process step is tuned by a digital process adaption strategy. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. With the presented control and adaption concepts for RPM-Synchronous Grinding, a significant increase in surface quality on the workpiece is attained. The minimization of grinding wheel wear results concurrently. Especially the automotive industry shows big interest in RPM-Synchronous Non-Circular Grinding. This emerging trend in finishing machining opens up various fields of application.


2018 ◽  
Vol 767 ◽  
pp. 259-267 ◽  
Author(s):  
Frederik Vits ◽  
Daniel Trauth ◽  
Patrick Mattfeld ◽  
Rudolf Vits ◽  
Fritz Klocke

Cutting tools made of polycrystalline diamond (PCD) are used for machining of aluminum alloys, fiber-reinforced plastic composites and wood. Compared to cemented carbide tools with geometrically defined cutting edges, PCD tools offer significant advantages with respect to tool life. High demands regarding the cutting edge roughness and the quality of the rake and the flank face usually require a grinding process with diamond grinding wheels. The PCD grinding process, however, is characterized by low material removal rates and high grinding wheel wear. The material removal rate and the grinding wheel wear, in turn, highly depend on the process state variables process force and process temperature. However, the relationship between these process state variables and the process input variables is largely unknown. This work provides a contribution to the closure of this knowledge gap by means of an adapted friction law. A single grain friction test stand using the pin-disk principle was developed, which enables a measurement of the friction force and the contact zone temperature for normal forces and relative speeds that are common in PCD grinding. During the experiments, the specification of the PCD disc, the cross-sectional area of the friction sample made of monocrystalline diamond as well as the process parameters normal force and relative speed were varied. In addition, the tests were carried out without lubrication as well as with a minimum lubrication. A high correlation between the contact force and the coefficient of friction was determined. This relationship was mathematically formulated in a friction law. In addition, a direct influence of the contact force and the relative velocity on the contact zone temperature was identified. The knowledge gained leads to an improved understanding of the PCD grinding process and thus enables a more efficient grinding process design.


Sign in / Sign up

Export Citation Format

Share Document