Analysis of Effective Cutting-Edge Distribution of Grinding Wheel Based on Topography of Working and Ground Surfaces

2011 ◽  
Vol 325 ◽  
pp. 60-65
Author(s):  
Haruhisa Sakamoto ◽  
Kyoko Nakamura ◽  
Yoshinori Sasaki ◽  
Shinji Shimizu

In this study, the determination method of the number of the effective cutting-edges had been proposed based on the measurements of working surface topography and the grinding force. Furthermore, its validity is made clear based on the topographical analysis of the ground surface roughness of pure copper, which is excellent in transcribing the working surface. From the results, the following are found out: The ground surface topography contains the periodical component, which is originated in the grinding and dressing conditions, on the fractal noise component. The cutting traces by each cutting-edge can be countable from the ground surface profile, and then, the number of the effective cutting-edges is identified at one line within the working surface. On the other hand, the number of the effective cutting-edges also can be identified based on the working surface, but, this method requires the determination of the typical grain shape. From the experiment, it is confirmed that the grain shape should be almost spherical for making the numbers of the effective cutting-edge identified from the working and ground surfaces equal.

2009 ◽  
Vol 404 ◽  
pp. 77-84
Author(s):  
Junichi Tamaki ◽  
Akihiko Kubo

The effect of cutting-edge truncation on the grinding mechanism of quartz glass as a hard and brittle material was investigated. From computer-aided grinding simulations and experiments on surface plunge grinding it was found that cutting-edge truncation decreases the ground-surface roughness and the maximum grain depth of cut; however, the maximum grain depth of cut approaches a constant value depending on the grinding wheel specifications. The alternative means of making the maximum grain depth of cut much smaller than this constant value is to increase the speed ratio. Cutting-edge truncation should be terminated at the optimum truncation depth to avoid the high grinding forces resulting from the flattening of cutting edges.


2009 ◽  
Vol 76-78 ◽  
pp. 143-148 ◽  
Author(s):  
Haruhisa Sakamoto ◽  
Shinji Shimizu ◽  
Shinichi Kashiwabara ◽  
Hitoshi Tsubakiyama

To manage and control grinding process theoretically, the cutting-edge density should be quantified. In this study, the estimation method of the grain-height distribution, which is necessary to quantify the cutting-edge density, has been examined. From the results of simulation by modeling the grain distribution of a grinding wheel, the close correlation has been confirmed between the grain-height distribution and the peak-height distribution of the working surface profile. Based on this, the grain-height distribution can be estimated from the peak-height distribution by narrowing the width accompanied maintaining the total frequency. Since the estimated grain-height distribution agreed well to the distribution determined from the measured 3D-topography, the validity of the method has been confirmed.


2007 ◽  
Vol 329 ◽  
pp. 495-500
Author(s):  
Hang Gao ◽  
W.G. Liu ◽  
Y.G. Zheng

It is experimentally found that existing micro-holes or micro-concaves on the cemented carbide base surface of electroplated CBN wheel is one of important reasons to worsen the combining intensity of the electroplated abrasives layer with the grinding wheel base. It is well solved by sealing the holes or concaves with steam sealing method. Further more the electroplated CBN wheel with cemented carbide base for precision grinding of compressor cylinder vane slot is developed by optimizing the electroplating prescription and process. Productive grinding results show that the ground surface roughness, size precision and the wheel life have reached the advanced index of the same type of wheel imported.


Author(s):  
Abdalslam Darafon ◽  
Andrew Warkentin ◽  
Robert Bauer

This paper presents a new empirical model of the dressing process in grinding which is then incorporated into a 3D metal removal computer simulator to numerically predict the ground surface of a workpiece as well as the dressed surface of the grinding wheel. The proposed model superimposes a ductile cutting dressing model with a grain fracture model to numerically generate the resulting grinding wheel topography and workpiece surface. Grinding experiments were carried out using “fine”, “medium” and “coarse” dressing conditions to validate both the predicted wheel topography as well as the workpiece surface finish. For the grinding conditions used in this research, it was observed that the proposed dressing model is able to accurately predict the resulting workpiece surface finish for all dressing conditions tested. Furthermore, similar trends were observed between the predicted and experimentally-measured grinding wheel topographies when plotting the cutting edge density, average cutting edge width and average cutting edge spacing as a function of depth for all dressing conditions tested.


2022 ◽  
Vol 16 (1) ◽  
pp. 12-20
Author(s):  
Gen Uchida ◽  
Takazo Yamada ◽  
Kouichi Ichihara ◽  
Makoto Harada ◽  
Tatsuya Kohara ◽  
...  

In the grinding process, the grinding wheel surface condition changes depending on the dressing conditions, which affects the ground surface roughness and grinding resistance. Several studies have been reported on the practical application of dressing using prismatic dressers in recent years. However, only a few studies that quantitatively evaluate the effects of differences in dressing conditions using prismatic dresser on the ground surface roughness and grinding resistance have been reported. Thus, this study aims to evaluate quantitatively the effect of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance by focusing on the dressing resistance. In the experiment, dressing is performed by changing the dressing lead and the depth of dressing cut with a prismatic dresser, and the ground surface roughness and grinding resistance are measured. Consequently, by increasing the dressing lead and the depth of dressing cut, the ground surface roughness increased, and the grinding resistance decreased. This phenomenon was caused by the increase in dressing resistance when the dressing lead and the depth of dressing cut were increased, which caused a change in the grinding wheel surface condition. Furthermore, the influence of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance can be quantitatively evaluated by using the dressing resistance.


Author(s):  
T M A Maksoud ◽  
A A Mokbel ◽  
J E Morgan

The spatial distribution of sharp cutting edges around the active periphery of a grinding wheel has an important effect on the surface finish of ground components. In addition, random protrusion of sharp edges can result in a random distribution of grinding forces acting on the ground surface. A uniformly dressed and accurately trued wheel is essential for successful grinding. Since these conditions will alter during use, monitoring of them during grinding must be a requirement for critical grinding operations. This paper describes a new system for achieving on-line detection of the grinding wheel condition. The system uses a small air flapper nozzle-transducer arrangement which detects in-process changes of the grinding wheel surface topography, where external triggering of the data-acquisition system ensures a highly accurate identification of the wheel's surface topography irrespective of wheel speed. The benefits of this system are illustrated by experimental results that correlate the measurement of wheel topography by two means: flapper nozzle and stylus.


Sign in / Sign up

Export Citation Format

Share Document