Temperature Cycle Measurement System Based on Single Chip Computer

2010 ◽  
Vol 428-429 ◽  
pp. 487-492
Author(s):  
Xi Yin ◽  
Xiao Jun Wang ◽  
Yong Que Xie

This thesis introduces a low cost and high precision temperature cycle measurement system with adoption of PT100 as temperature sensor, with single chip computer as the core. The method of sub-three-wire connection is proposed for engineering practice, then, can eliminate the effects of lead wire resistance and simplify the external cable connection. We discuss and research circuit component selection, circuit design, improving system reliability, and a software method of piecewise linearization process is adopted, thus we ensure exact and reliable measure and the system characteristic of low cost and high precision.

2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


2012 ◽  
Vol 241-244 ◽  
pp. 259-264 ◽  
Author(s):  
Wang Li ◽  
Gen Wang Liu ◽  
Fu He Yang

A system of miniaturized lithium battery electrochemical impedance spectroscopy (EIS) measurement is designed with high precision impedance converter chip AD5933 as its core. The measurement range of the system is from 0.010Hz to 100 KHz. Meanwhile, by using a high-level programming language of C#, an interface is developed which can real-time graphic display of EIS information. Through measurement and analysis of two types of impedance, the results show that detection precision of the system is less than 3.5%. Finally, amplitude-frequency response curves and Nyquist plots of HL-18650 M lithium battery at different state of charge (SOC) levels are measured. Compared with lithium battery EIS measurement system by traditional division, this system has the outstanding advantages of small size, high level of integration, low cost, simple operation and high precision. It is helpful to the mass production and application of lithium battery EIS measurement system.


2013 ◽  
Vol 756-759 ◽  
pp. 574-578 ◽  
Author(s):  
Xue Zhe Li ◽  
Xiao Hui Feng

The gas sealing performance of electronic sphygmomanometer is an important index of its quality control. At present, the gas leak detection of sphygmomanometer is mainly by manual, which has disadvantages of low efficiency and precision, huge impact of human factors and so on. An automatic and high precision gas sealing performance inspection module is proposed in the paper, which solves the problems of pressure calibration and gas leak detection of sphygmomanometer products. The paper also introduces the principle and implementation of system project. The module is designed by STC12C5A single-chip, KPM DC air pump and the pressure sensor of E8CC, which has advantages of high precision, high efficiency, low cost, and flexible operation etc.


2011 ◽  
Vol 480-481 ◽  
pp. 790-794
Author(s):  
Li Jun Bi ◽  
Hong Yu Sun ◽  
Shou Shan Liu

One kind of automatic wireless infusion control/monitoring system based on micro controller unit(MCU) and nRF401 had been designed and implemented to overcome the shortages in the processing of venous transfusion care. The system used AT89C52 single-chip computer as machine’s core, the realization of communication between a master computer and a slave computer with nRF401. Doctors could get the information through the wireless transmission to control and monitor the process of transfusion in time. According to RS232 communication protocol, the system implements the communication between one computer and multi-computer by adopting AT89C51 single chip microcomputer. This system has many advantages, such as low cost, high precision, small volume, convenience, low power consumption, good extendibility and so on.


2013 ◽  
Vol 321-324 ◽  
pp. 671-675
Author(s):  
Ming Ye ◽  
Dong Jing Xu ◽  
Zhi Qiang Ni

This paper presents a new method for micro-aperture measurement based on luminous flux. The principle and the structure of micro-aperture measurement system are introduced in detail. Compared with previous measurement methods, the proposed method has several advantages: The measuring head with array line structure can measure several apertures’ area directly at the same time. The shape of the aperture is not limited to a circle or any other shape. It is a measuring technique with high precision and low cost. The test results show that the uncertainty is mm of a circular 0.5 mm diameter aperture, and the average linearity value is 3.47% to the aperture which diameter in the range from 150 to 500um.


2014 ◽  
Vol 513-517 ◽  
pp. 4039-4042
Author(s):  
Cao Rui ◽  
Kong Jun Bao

This temperature measurement system is based on the control of AT89S52 single chip microcontroller, with temperature display function. Temperature information is changed into digital signal directly by a single bus digital temperature sensor DS18B20, and the digital signal is sent into microcontroller for real-time acquisition. The results are displayed through LCD module 1602 in real time. The system is with the characteristics of low cost, high precision, stable performance and convenient operation. The system can be extended to multi-point temperature detecting system easily, and adding temperature transfinite alarm function.


2011 ◽  
Vol 383-390 ◽  
pp. 5166-5170
Author(s):  
Ming Lin Yao ◽  
Yu Jun Guan ◽  
Cui Ying Dong

In the ultrasonic gas temperature measurement system, the principle is that the velocity of sound in gas is a function of temperature. But because the propagation speed of ultrasonic wave can be easily affected by humidity, the accuracy of the gas temperature measurement will be affected too. This dissertation will implement the ultrasonic gas temperature measurement system with humidity correction suitable for all kinds of environment humidity. This type of ultrasonic technique is a highly efficient algorithm with the advantages of both time-of-flight method and phase shift method. And the system is realized with a single-chip microcomputer-based with a relative humidity/water vapor pressure meter. The main advantages of this ultrasonic temperature measurement system are high resolution, using narrow-bandwidth ultrasonic transducer of low cost and ease of implementation.


Sign in / Sign up

Export Citation Format

Share Document