scholarly journals Flutter Analysis of a Hybrid Plate-Like Fiber-Reinforced Composite Wing

2011 ◽  
Vol 471-472 ◽  
pp. 1107-1112
Author(s):  
Dayang Laila Abang Abdul Majid ◽  
Shahnor Basri ◽  
Renuganth Varatharajoo ◽  
A.H. Attaran

The aeroelastic flutter of a laminated hybrid composite wing was investigated. The composite wing was modelled as composite plates and the aeroelastic analysis has been carried out in the frequency-domain. Pre-determined fiber orientation of a 3-layers carbon/epoxy and glass/epoxy laminated plate has been employed with various aspect ratios. The modal approach and the Doublet-lattice Method (DLM) have been used herein to calculate the normal modes and the unsteady aerodynamics of the plate. The structural and aerodynamic models were connected using surface splines and the flutter speed has been calculated using the p-k method that provides the eigenvalues at different air densities and airstream velocities. The study showed that it is imperative that the carbon/epoxy should be employed in the outermost layers in order to improve the flutter speed and flutter frequency.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sen Mao ◽  
Changchuan Xie ◽  
Lan Yang ◽  
Chao Yang

A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then, the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out. Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design of a morphing TE wing.


Author(s):  
Yu Cheng Liu ◽  
Jin Huang Huang

This paper mainly analyzes the wave dispersion relations and associated modal pattens in the inclusion-reinforced composite plates including the effect of inclusion shapes, inclusion contents, inclusion elastic constants, and plate thickness. The shape of inclusion is modeled as spheroid that enables the composite reinforcement geometrical configurations ranging from sphere to short and continuous fiber. Using the Mori-Tanaka mean-field theory, the effective elastic moduli which are able to elucidate the effect of inclusion’s shape, stiffness, and volume fraction on the composite’s anisotropic elastic behavior can be predicted explicitly. Then, the dispersion relations and the modal patterns of Lamb waves determined from the effective elastic moduli can be obtained by using the dynamic stiffness matrix method. Numerical simulations have been given for the various inclusion types and the resulting dispersions in various wave types on the composite plate. The types (symmetric or antisymmetric) of Lamb waves in an isotropic plate can be classified according to the wave motions about the midplane of the plate. For an orthotropic composite plate, it can also be classified as either symmetric or antisymmetric waves by analyzing the dispersion curves and inspecting the calculated modal patterns. It is also found that the inclusion contents, aspect ratios and plate thickness affect propagation velocities, higher-order mode cutoff frequencies, and modal patterns.


1975 ◽  
Vol 14 (1) ◽  
pp. 25-37 ◽  
Author(s):  
John D. Love

The normal modes of oscillation of a cold dielectric plasma ring are analysed in the quasi-electrostatic approximation. An exact dispersion relation is derived, valid for all aspect ratios. Its solutions are shown to be extremely close to those of an infinite cylindrical plasma with cross-section equal to the minor cross-section of the ring, when the cylinder is considered as a wavelength-preserving limit of the toroidal geometry.


2021 ◽  
Author(s):  
Keisuke Otsuka ◽  
Shuonan Dong ◽  
Kanjuro Makihara

Abstract Future aircraft have a high aspect ratio wing (HARW). The low induced drag of the wing can reduce fuel consumption, which enables eco-friendly flight. HARW cannot be designed by using conventional linear aeroelastic analysis methods because it undergoes very flexible motion. Although absolute nodal coordinate formulations (ANCF) have been widely used for analyzing various flexible structures, their application to HAWR is limited because the derivation of the ANCF elastic force for wing cross section is difficult. In this paper, we first describe three ANCF-based beam models that address the difficulty. The three models have different characteristics. Second, an aeroelastic coupling between the beam models and a medium-fidelity aerodynamic model based on unsteady vortex lattice method (UVLM) is briefly explained. Especially, the advantage of ANCF in the aeroelastic coupling is emphasized. Finally, we newly compare the three ANCF-based models in structural and aeroelastic analyses. From the viewpoint of the convergence performance and calculation time, we found the best ANCF-based beam model among the three models in static structural and aeroelastic analyses, while the three models have comparable performances in dynamic structural and aeroelastic analyses. These findings contribute to the development of aeroelastic analysis framework based on ANCF and the design of next-generation aircraft wings.


2020 ◽  
Vol 99 (4) ◽  
pp. 297-308
Author(s):  
Marco Pizzoli

AbstractThe present paper provides an investigation of the effects of linear slosh dynamics on aeroelastic stability and response of flying wing configuration. The proposal of this work is to use reduced order model based on the theory of the equivalent mechanical models for the description of the sloshing dynamics. This model is then introduced into an integrated modeling that accounts for both rigid and elastic behavior of flexible aircraft. The formulation also provides for fully unsteady aerodynamics modeled in the frequency domain via doublet lattice method and recast in time-domain state-space form by means of a rational function approximation. The case study consists of the so-called body freedom flutter research model equipped with a single tank, partially filled with water, located underneath the center of mass of the aircraft. The results spotlight that neglecting such sloshing effects considering the liquid as a frozen mass may overshadow possible instabilities, especially for mainly rigid-body dynamics.


2012 ◽  
Vol 19 (3) ◽  
pp. 295-306 ◽  
Author(s):  
Umut Topal

AbstractThis paper deals with frequency optimization of symmetrically laminated 4-layered angle-ply plates with one or two different intermediate line supports. The design objective is the maximization of the fundamental frequency and the design variable is the fiber orientation in the layers. The first order shear deformation theory and nine-node isoparametric finite element model are used for finding the natural frequencies of laminates. The modified feasible direction method is used for the optimization routine. For this purpose, a program based on FORTRAN is used. Finally, the numerical analysis is carried out to investigate the effects of location of the internal line supports, plate aspect ratios and boundary conditions on the optimal designs and the results are compared.


2007 ◽  
Vol 348-349 ◽  
pp. 725-728 ◽  
Author(s):  
Omer Soykasap ◽  
Şükrü Karakaya

In this study, the structural optimization of laminated composite plates for maximum buckling load capacity is performed by using genetic algorithm. The composite plate under consideration is a 64-ply laminate made of graphite/epoxy, is simply supported on four sides, and subject to in-plane compressive static loads. The critical buckling loads are determined for several load cases and different plate aspect ratios using 2-ply stacks of 02, ±45, 902. The problem has multiple global solutions, the results of which are compared with previously published results.


Sign in / Sign up

Export Citation Format

Share Document