Effect of Loading Concentration on the Electrical and Hardness Properties of MWCNT/Epoxy Nanocomposites

2011 ◽  
Vol 471-472 ◽  
pp. 157-161
Author(s):  
R. Nishata Royan ◽  
Abu Bakar Sulong ◽  
Jaafar Sahari

Carbon nanotubes have excellent mechanical and electrical properties, and are also a good reinforcement material for composites than conventional materials. The matrix used in this study was epoxy and reinforcement filler in multi-walled carbon nanotubes (MWCNTs). The different MWCNTs loading concentrations (0 ~ 10 wt. %) were added into the epoxy resin. The dispersion of MWCNTs in epoxy resin was conducted using high speed mixer through mechanical shearing mechanism. The mixture of epoxy/MWNTs suspension was poured into the mold and compression molding was conducted for fabrication of MWCNTs/epoxy nanocomposites. The electrical conductivity of nanocomposite by variation of CNTs concentration was measured by the four point probe. Dispersion state of CNTs in epoxy matrix was observed on fractured surface by scanning electron microscopic. Hardness of the composite was tested using the Dinamic Ultra Micro Hardness machine. Non conductive epoxy polymer becomes conductor as addition of CNTs.. Electrical conductivity of nanocomposite plates increased with increasing CNTs concentration. Agglomerations of CNTs were observed on fractured surfaces. This phenomenon due to CNTs which used in this study was at as produced state where no modification is being done on it. Long and entanglement of individual CNTs easily lead to agglomerations. Van de Wall’s force interactions between CNTs also contribute to the agglomerations of CNTs. Hardness of the composite increases with the CNTs loading concentrations until it reaches a maximum peak at the composition of 5wt% of CNTs but the hardness decreases rapidly with loading greater than 5wt% of CNTs.

2013 ◽  
Vol 701 ◽  
pp. 197-201 ◽  
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong

This study investigates the effect of carbon nanotubes (CNTs) as conductive fillers and epoxy resin as matrix on the electrical conductivity and hardness property. The different CNTs weight percentage (0 ~ 10 wt.%) were added into the epoxy resin. The dispersion of CNTs in epoxy resin was conducted by high speed mixer through mechanical shearing mechanism. The mixture of CNTs/epoxy was poured into the mold and compression molding was conducted for fabrication of CNTs/epoxy nanocomposites. The electrical conductivity and hardness of CNTs/epoxy nanocomposites by several of CNTs loading concentration were measured by the four point probe and dynamic ultra micro hardness tester. Agglomeration of CNTs in epoxy matrix was observed on fractured surface by scanning electron microscopic. Non conductive epoxy polymer becomes conductor as addition of CNTs. Electrical conductivity of CNTs/epoxy nanocomposites were increased with increasing of CNTs loading concentration. Hardness property of CNTs/epoxy nanocomposites ware reached the highest value at 5 wt.%, and then it was decreased.


2011 ◽  
Vol 264-265 ◽  
pp. 559-564 ◽  
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong

Electrical properties of carbon nanotubes-based epoxy nanocomposites for high electrical conductive plate were investigated. Dispersion and incorporation mechanism between two conductive fillers with different sizes (CNTs and Graphite) in the polymer matrix are the key factors in the fabrication of high electrical conductivity plate. Different variation of carbon nanotubes (CNTs) (1~10 wt %) and Graphite (G) (60 ~ 69 wt %) loading concentration were added into the epoxy resin. Dispersion of CNTs and G in epoxy resin were conducted by the internal mixer with a Haake torque rheometer. The mixture of G/CNTs/EP was poured into the steel mold, and G/CNTs/EP nanocomposites had been fabricated through compression molding. The electrical conductivity of nanocomposites in terms of variation of G and CNTs concentration were measured by the four point probe for in a plane electrical conductivity. The results revealed that addition of G/CNTs and increasing curing temperature are effective ways to produce high electrical conductive nanocomposites. The highest electrical conductivity was reached on 104.7 S/cm by addition 7.5 wt% of CNTs. Dispersion quality of G and CNTs in the epoxy matrix was observed on the fractured surface by scanning electron microscopic.


2011 ◽  
Vol 471-472 ◽  
pp. 162-166 ◽  
Author(s):  
R. Nishata Royan ◽  
Abu Bakar Sulong ◽  
Hendra Suherman ◽  
Jaafar Sahari

Carbon nanotubes (CNTs) have excellent mechanical and electrical properties than conventional materials (carbon black and glass fibers), and are promising candidates as reinforcement material for composites. Formation of electrical conductive with effective dispersion of filler remains a main challenge in the polymer matrix and fillers in order to achieve a good electrical conductivity. Therefore, one of the solutions is to functionalize through wet oxidation of the CNTs besides adding surfactants or assisted liquids. Functionalization of CNTs involves the generation of chemical moieties on their surface that can improve the solubility and processibility. Any functionalization that is undertaken must preferably not influence other key properties such as strength and electrical conductivity of the nano-composite. The matrix used in this study was epoxy and reinforcement filler was multi-walled carbon nanotubes (MWCNTs). MWCNTs were treated with sulfuric acid and nitric acid at 3:1 (v/v) ratio. The present of functional groups on CNTS were investigated using Fourier Transform Infrared (FT-IR). Different weight percentages of MWCNTs (functionalized and as produced) / epoxy composite were prepared. The electrical conductivity of functionalized MWCNTs nanocomposites and as produced MWCNTs nanocomposites were measured by the four point probe. Dispersion state of CNTs in epoxy matrix was observed on fractured surface by scanning electron microscopic. Functionalized CNTs gave better dispersion stability in solvents than non-functionalized CNTs. As expected, non- functionalized CNTs (as produced MWCNTs) are not dispersed at all in all the solvents. However, functionalized CNTs composites give low electrical conductivity. Defects from acid treatment are assumed will damage the original chirality of as produced CNTs and give unbalance polarization on the CNTs, which are the reasons for no formation of conductive pathway networks of acid treated CNTs under electric field.


Author(s):  
Tanjheel H. Mahdi ◽  
Mohammad E. Islam ◽  
Mahesh V. Hosur ◽  
Alfred Tcherbi-Narteh ◽  
S. Jeelani

Mechanical and viscoelastic properties of polymer nanocomposites reinforced with carboxyl functionalized multiwalled carbon nanotubes (COOH-MWCNT), montmorillonite nanoclays (MMT) and MWCNT/MMT binary nanoparticle were investigated. In this study, 0.3 wt. % of COOH-MWCNT, 2 wt. % of MMT and 0.1 wt. % COOH-MWCNT/2 wt. % MMT binary nanoparticles by weight of epoxy were incorporated to modify SC-15 epoxy resin system. The nanocomposites were subjected to flexure test, dynamic mechanical and thermomechanical analyses. Morphological study was conducted with scanning electron microscope. Addition of each of the nanoparticles in epoxy showed significant improvement in mechanical and viscoelastic properties compared to those of control ones. But, best results were obtained for addition of 0.1% MWCNT/2% MMT binary nanoparticles in epoxy. Nanocomposites modified with binary nanoparticles exhibited about 20% increase in storage modulus as well as 25° C increase in glass transition temperature. Flexural modulus for binary nanoparticle modified composites depicted about 30% improvement compared to control ones. Thus, improvement of mechanical and viscoelastic properties was achieved by incorporating binary nanoparticles to epoxy nanocomposites. The increase in properties was attributed to synergistic effect of MWCNTs and nanoclay in chemically interacting with each other and epoxy resin as well as in arresting and delaying the crack growth once initiated.


2010 ◽  
Vol 447-448 ◽  
pp. 614-618 ◽  
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong

This study investigates the electrical conductivity and micro hardness of synthetic and natural graphite epoxy composite. Graphite used on this study is synthetic graphite (SG) and natural graphite (NG) with particle size 44m and 30m, respectively. Different graphite concentrations (50 ~ 80 wt.%) were added into the epoxy resin. The dispersion of graphite in epoxy resin was conducted by high speed mixer through mechanical shearing mechanism, its graphite epoxy suspension was poured into the mold and compression molding was conducted for fabrication of graphite epoxy composites. Electrical conductivity was measured by the four point probe. Microscopic analyses conducted on fracture surface use scanning electron microscopic. Results reveal that non conductive epoxy polymer becomes conductor as addition of graphite. Electrical conductivity of NG higher than SG at the same weight percentage (Wt. %) of conducting filler loading. The highest loading concentration, it exhibited values 12.6 S/cm and 7 S/cm at (80 Wt. %). Hardness property of epoxy composites of both type of graphite increase continuously and reached peak at 60 wt% for NG and 70 wt % for SG, while more addition decreased it.


This work is devoted to the study of the effect of carbon nanotubes functionalization on the electrical conductivity of composite materials based on them. Carbon nanotubes were functionalized by treatment in nitric acid and isopropyl alcohol. Changes in the morphology of multi-walled carbon nanotubes during liquid-phase functionalization were investigated using Auger-electron microscopy. Samples of composite material on the basis of initial and functionalized carbon nanotubes and epoxy resin were prepared and the concentration dependence of electrical conductivity using the four-probe method was studied. The study reveals the effect of functionalization in various solutions on the electrophysical properties of the obtained carbon nanotubes/epoxy composites.


2018 ◽  
Vol 939 ◽  
pp. 170-176
Author(s):  
Xiang Fu ◽  
Maximiano Ramos ◽  
Ahmed M. Al-Jumaily ◽  
Xi Yong Huang ◽  
Nargis Chowdhury

Polymer nanocomposites based on carbon nanotubes attract a great deal of attention recently due to their excellent performance. The dispersion state of CNTs embedded in the matrix is the primary and key issue to realize the potential of the nanocomposite. Here, this paper considers how the boiling point of solvent affects the performance of the nanocomposite when the ultrasonication dispersion method is employed. It is found that solvent with a low boiling point is conducive to save evaporation time so that CNTs can maintain the homogenous dispersion state as much as possible after ultrasonication. Therefore, the stretchability and tensile strength can be improved, while the electrical conductivity has an obvious enhancement as well.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Michael Zimmer ◽  
Qunfeng Cheng ◽  
Shu Li ◽  
James Brooks ◽  
Richard Liang ◽  
...  

There are documented advantages to using carbon nanotubes (CNTs) in composites for various property enhancements. However, to date, only limited studies have been conducted on using of longer CNTs over 1 mm in length. This study used long multiwalled carbon nanotubes (LMWCNTs) and their longer extended networks to test multiple properties in thermal conductivity, electrical conductivity, mechanical strength, and modulus and then compared these properties to those of shorter multi-walled carbon nanotubes (SMWCNTs). For carbon fiber-reinforced composites, the longer graphite paths from LMWCNTs in the matrix were expected to improve all properties. The longer networks were expected to allow for more undisturbed phonon transportation to improve thermal conductivity. This in turn relates to improved electrical conductivity and better mechanical properties. However, results have shown that the LMWCNTs do not improve or decrease thermal conductivity, whereas the shorter MWCNTs provide mixed results. LMWCNTs did show improvements in electrical, mechanical, and physical properties, but compared to shorter MWCNTs, the results in other certain properties varied. This perplexing outcome resides in the functioning of the networks made by both the LMWCNTs and shorter MWCNTs.


2010 ◽  
Vol 447-448 ◽  
pp. 643-647
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong ◽  
R. Nishata Royan

Carbon nanotubes (CNTs) have excellent mechanical and electrical properties. CNTs reported have excellent properties that can replace conventional conductive filler in advanced engineering applications. The polymer matrix was epoxy resin (EP).Conductive fillers were MWCNTs and synthetic graphite (G). Different variation of CNTs (0~10 wt. %) and graphite (60 ~ 67.5 wt. %) loading concentration were added into the epoxy resin. Dispersion of CNTs and G in epoxy resin were conducted by internal mixer with a Haake torque rheometer. The mixture of G/CNTs/EP was poured into the steel mold, and G/CNTs/EP nanocomposites had been fabricated through compression molding. The electrical conductivity of nanocomposites in term of variation of G and CNTs concentration were measured by the four point probe for in plane electrical conductivity. The results revealed that addition of G/CNTs and increasing curing temperature are an effective ways to produce high electrical conductive nanocomposites. Dispersion quality of CNTs and G in epoxy matrix were observed on the fractured surface by scanning electron microscopic.


2013 ◽  
Vol 06 (04) ◽  
pp. 1350045
Author(s):  
YA-PING ZHENG ◽  
WEI CHEN ◽  
FEI WU ◽  
GUO-BIN ZHENG ◽  
YA-HONG XU ◽  
...  

Multi-walled carbon nanotubes (MWNTs), which were coated with magnetic Fe 3 O 4 nanoparticles, were cured and aligned in epoxy resin under magnetic field. They were aligned end-to-up under 0.6 T magnetic field. When the Fe 3 O 4-MWNTs hybrids content was 0.3%, the electric conductivity were 4.2 S/cm. Frequency and Fe 3 O 4-MWNTs hybrids content are the key roles for electric conductivity.


Sign in / Sign up

Export Citation Format

Share Document