Incremental Bending of Ultra-High-Strength Steels

2011 ◽  
Vol 473 ◽  
pp. 53-60 ◽  
Author(s):  
Antti Määttä ◽  
Kari Mäntyjärvi ◽  
Jussi A. Karjalainen

Utilisation of ultra-high-strength steels (UHS) has increased, particularly in the automotive industry. By using these materials vehicle structures can be lightened. However, one of the problems of UHS is weak formability. Materials fracture easily with small bending radii and the minimum bending radii are rather large. In this study, the tested materials were complex phase (CP) bainitic-martensitic UHS steels (YS/TS 960/1000 and 1100/1250). The steels were incrementally bent with a press brake in the rolling direction and perpendicular to it, and the final bending angle was 90 degrees. The incremental bending angles were 150°, 130°, 110° and 90°. The punch was unloaded after every incremental bending step. The test materials were bent with different bending radii. The aim was to find the minimum bending radius which produces an acceptable bend. Every incremental bend was compared with a bending performed in the traditional manner. The aim of this study was to examine how well the results of incremental bending compare to roll forming. In addition, clarification studies of when the bend started to fracture were made. It is well known that steels are more efficiently bent by roll forming compared with traditional bending. The results presented in this study demonstrate that incremental bending does not produce better results than traditional bending. Nevertheless, it has been shown that the examined steels can be bent incrementally against manufacturer’s recommendations.

2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

2012 ◽  
Vol 504-506 ◽  
pp. 901-906 ◽  
Author(s):  
Antti Määttä ◽  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Kari Mäntyjärvi ◽  
Jussi A. Karjalainen

The use of ultra-high-strength steels (UHS) has become more and more popular within last decade. Higher strength levels provide lighter and more robust steel structures, but UHS-steels are also more sensitive to surface defects (e.g. scratches). Practically this means that the critical crack size decreases when the strength increases. The aim of the study was to study if the formula of critical crack size is valid on forming processes of UHS-steels. Surface cracks with different depths were created by scratching the surface of the sheet by machining center. Effect of the scratch depth was determined by bending the specimens to 90 degrees. Bents were then visually compared and classified by the minimum achieved bending radius. Test materials used were direct quenched (DQ) bainitic-martensitic UHS steels (YS/TS 960/1000 and 1100/1250). Results from the bending tests were compared to the calculated values given by the formula of critical crack size.


Author(s):  
Nguyen Trung Thien ◽  
Sung-Tae Hong ◽  
Moon-Jo Kim ◽  
Heung Nam Han ◽  
Dae-Ho Yang ◽  
...  

2019 ◽  
Vol 25 (3) ◽  
pp. 150
Author(s):  
Hung Thai Le ◽  
Dinh Thi Vu ◽  
Phuong Thi Doan ◽  
Kien Trung Le

Springback is a common phenomenon in sheet metal forming, in which the material undergoes an elastic recovery as applied loads are removed. Springback causes the forming shape to deviate from the intended design geometry. This phenomenon, which can be influenced by several factors, effects on both bending angle and bending curvature. The aim of this study is to determine the influence of different tool radius and the gap between punch and die on springback in bending of DP980 Advanced High-Strength Steels (AHSS) sheet. Experimental studies are combined with FEM method in commercial ABAQUS software to determine the bending angle after springback. To predict springback in bending process, the material properties are defined by Ludwik - Hollomon law, combined with the Hill’48 criterion. Experimental results are in good agreement with numerical simulations in case of bending in the rolling direction.


2013 ◽  
Vol 549 ◽  
pp. 76-83
Author(s):  
Jarmo Mäkikangas ◽  
Kari Kutuniva ◽  
Kari Mäntyjärvi

This paper focuses on the development of a new type of roll bending machine. Our primary aim was to build a machine that could form ultra-high-strength steels (UHS) with smaller inner radii than those achieved by traditional bending methods. One of the main planning principles was modular construction, so a length of a bending line could be easily selected or changed later by the user without major changes to the basic construction of the machine. In contrast, in traditional roll forming, the blank does not move during the forming process, so the accuracy of the profile can be better controlled. Different kinds of cut to size-open profiles can be produced by this machine, which utilizes and combines bending and rolling techniques. In the initial stages of the project, the needs of smaller companies that do short-run productions are taken into account. First, the prototype is designed mainly for research use; moreover, it is important that the properties of the machine are multifunctional. In addition, forming can be done in several ways by this machine. In this paper, there is shown creation of a machine, designing of construction and manufacturing steps of the whole machine including assembling. Also detailed description of the various functional components and the operating principle is presented. The results of the forming tests are also presented.


2014 ◽  
Vol 783-786 ◽  
pp. 818-824 ◽  
Author(s):  
Vili Kesti ◽  
A. Kaijalainen ◽  
A. Väisänen ◽  
A. Järvenpää ◽  
A. Määttä ◽  
...  

Use of ultra-high-strength steels (UHSS) in weight critical constructions is an effective way to save energy and minimize carbon footprint in the end use. On the other hand, the demands for reducing manufacturing costs and energy consumption of the steelmaker are increasing. This has led to development of energy efficient direct quenching (DQ) steelmaking process as an alternative to the conventional quenched and tempered or thermomechanical rolling and accelerate cooled processes. Ruukki has employed thermomechanical rolling and direct quenching process (TM + DQ) for a novel type of ultra-high-strength strip and plate steels since 2001. Advantages of the ultra-high-strength level (>900MPa) can be fully utilized only if fabricated properties are on a sufficient level. Bending is one of the most important workshop processes and a good bendability is essential for a structural steel. Hence, the metallurgy and bendability of Ruukki ́s TM + DQ strip steel Optim® 960QC have been investigated closely. It was found that by optimizing process parameters and chemical composition, a good combination of strength and ductility can be achieved by a modification of martensitic-bainitic microstructure. Despite of smaller total elongation, the bendability of Optim® 960QC is at least on the same level as on conventionally manufactured 960MPa steels. However, it is important to pay special attention to bending process (tool parameters, springback, bending force, material handling) when bending UHSS. It was also found that the bendability of Optim® 960QC can be significantly enhanced by local laser heat treatments or roll forming.


Sign in / Sign up

Export Citation Format

Share Document