Representation Methods for Microwave Absorption Ceramics

2011 ◽  
Vol 492 ◽  
pp. 176-179 ◽  
Author(s):  
Zhao Yang Zeng ◽  
Heng Liu ◽  
Ming Lu

Two methods are widely used to represent the microwave absorption properties of ceramics: measuring the values of electromagnetic parameters such as permeability and permittivity, or directly measuring the reflection rate of a metal-backed slab sample made of this material. However, do these two methods coincide with each other? If not, which method should be used as right way to represent this kind of ceramics? To answer these questions, both methods are carried out on the same ceramics, of which the results are compared. Distinct difference between these measured results is found, and the possible reasons for the difference are also discussed.

2009 ◽  
Vol 25 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Hong JIANG ◽  
Jia GUO ◽  
Lu ZHAO ◽  
Hong ZHU

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


Nanoscale ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 3967-3971 ◽  
Author(s):  
Jingjing Jiang ◽  
Da Li ◽  
Dianyu Geng ◽  
Jing An ◽  
Jun He ◽  
...  

2021 ◽  
Vol 47 (10) ◽  
pp. 14455-14463 ◽  
Author(s):  
Zhaowen Ren ◽  
Wancheng Zhou ◽  
Yuchang Qing ◽  
Shichang Duan ◽  
Haijun Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document