Cooling Tower Shell under Asynchronous Kinematic Excitation Using Concrete Damaged Plasticity Model

2013 ◽  
Vol 535-536 ◽  
pp. 469-472 ◽  
Author(s):  
Joanna M. Dulinska

The paper presents the analysis of the dynamic response of a cooling tower to moderate earthquake. To represent inelastic behavior of the concrete material of the tower under dynamic loading, the concrete damaged plasticity constitutive model was assumed. The model consists of the combination of non-associated multi-hardening plasticity and scalar damaged elasticity to describe the irreversible damage that occurs during the fracturing process. Two different models of seismic excitation were used. Initially, a classical model of uniform kinematic excitation was applied. In this model it was assumed that excitation at all supports was identical. Then, a model of non-uniform kinematic excitation, typical for large multiple-support structures, was introduced. In that model the wave passage along the foundation ring was taken into account. It occurred that the assumption of asynchronous excitation led to the increase of the dynamic response of the tower with respect to the assumption of uniform ground motion. The tensile damage (cracking) in some parts of the tower appeared and the stiffness of the concrete was degraded when non-uniformity of excitation was considered. This was due to the quasi-static effects resulting from changes of subsoil geometry during the shock. The analysis indicated that the classical assumption of uniform excitation may lead to non-conservative assessment of the dynamic response of the shell described with concrete damaged plasticity model.

The dynamic response of reinforced concrete (RC) panels without and with different configuration of opening under blast load scenario is investigated in the present study. The numerical simulations were carried out using finite element method with ABAQUS application. The concrete behavior under blast loading was modelled using Concrete damaged plasticity model. The material parameters for concrete damaged plasticity model were determined using methodology proposed by [14]. The parametric study was carried out using variation in blast load due to different charge weight. It was observed that the peak displacement increases with increase in blast load. It was also observed that at lower blast load, failure of reinforced concrete panel was initiated by cracking at rear face of panel but as the blast load increases the RC panel was failed by combination of crushing of front face of panel along with cracking of rear face. It was observed that for the given blast load, the RC panel without opening is less affected by crushing failure as compared to RC panel with opening configuration studied. It was also observed that the RC panel with circular opening at center is stiffer than other opening configuration and observed to have stable structural performance against the blast load studied.


2018 ◽  
Vol 10 (09) ◽  
pp. 1850095 ◽  
Author(s):  
H. Wang ◽  
D. Tang ◽  
D. Y. Li ◽  
Y. H. Peng ◽  
P. D. Wu

Magnesium alloys exhibit significant inelastic behavior during unloading, especially when twinning and detwinning are involved. It is commonly accepted that noteworthy inelastic behavior will be observed during unloading if twinning occurs during previous loading. However, this phenomenon is not always observed for Mg sheets with strong rolled texture. Therefore, the inelasticity of AZ31B rolled sheets with different rolled textures during cyclic loading-unloading are investigated by elastic viscoplastic self-consistent polycrystal plasticity model. The incorporation of the twinning and detwinning model enables the treatment of detwinning, which plays an important role for inelastic behavior during unloading. The effects of texture, deformation history, and especially twinning and detwinning on the inelastic behaviors are carefully investigated and found to be remarkable. The simulated results are in agreement with the available experimental observations, which reveals that the inelastic behavior for strongly rolled sheets is very different than the extruded bars.


2016 ◽  
Vol 711 ◽  
pp. 966-973
Author(s):  
Joanna M. Dulinska ◽  
Izabela J. Murzyn

In the paper a non-linear dynamic response of a concrete highway tunnel to a natural earthquake is presented. The acceleration time history of the registered shock was applied as seismic excitation acting in three directions. The peak ground acceleration (PGA) of the shock was 0.5 g. A three-dimensional FE model of the concrete tunnel section (600 m long) and surrounding soil layers was created with the ABAQUS software. To represent the inelastic behavior of the tunnel under the earthquake, a concrete damage plasticity model was assumed as a constitutive model for the concrete. A model of spatially varying ground motion, which takes so called “wave passage effect” was implemented for the dynamic analysis. Two velocities of seismic wave propagation were assumed: 500 and 1000 m/s. These velocities are typical for soft and stiff bedrock, respectively. It turned out that in case of stiffer bedrock, in which seismic waves propagate faster, the damage pattern shows less cracking than in case of soft bedrock. The distribution of plastic and damage computed indices also allowed to assess the impact of the shock on the structure. It turned out that the analyzed shock with PGA of 0.5 g was strong enough to cause severe destruction (cracking) in the tunnel lining. Finally, the transverse pattern of cracks, that was obtained from the calculations, was in good agreement with damages observed during severe earthquakes.


Author(s):  
Gangling Hou ◽  
Chenning Song ◽  
Tianshu Song ◽  
Guoliang Zhou

Nuclear containment protects nuclear island from serious accident, while its compressive bearing capacity remains the key problem to nuclear safety. With reference to one nuclear containment, the special concrete damaged plasticity model in software ABAQUS, this article systematically analyzes influencing rules of compressive bearing capacity and factors such as gravity, steel liner, prestressed tendons etc. The result shows that steel liner and prestressed tendons play key parts in deformation inhibition and the failure mode of nuclear containment, meanwhile prestressed tendons are crucial to improve the compressive bearing capacity.


1978 ◽  
Vol 104 (1) ◽  
pp. 35-53
Author(s):  
Ray L. Steinmetz ◽  
David P. Billington ◽  
John F. Abel

2013 ◽  
Vol 444-445 ◽  
pp. 884-888
Author(s):  
Xue Han ◽  
Zheng Liu

In order to research the stress performance of reinforced concrete beam with different forms of reinforcement around the openings, a numerical simulation on reinforced concrete beam with circle openings is made by using the finite element software. The constitutive relation of concrete offered by the 2010 edition of code for design of concrete structures and the concrete damaged plasticity model is adopted in this article. The damage factor is introduced in the process of modeling, which can reflect the damage of beams with different forms of reinforcement directly and help to reveal the failure mechanism of members. Thus we can propose the optimization of reinforcement method.


2014 ◽  
Vol 578-579 ◽  
pp. 25-30
Author(s):  
Ke Jia Yang ◽  
Zi Ling Xie ◽  
Wei Li

The damage evolution equation of RPC is established based on 2-parameter Weibull distribution. The constitutive relation of RPC is then calculated based on the damage evolution equation. The constitutive model of RPC is optimized by comparing experimental constitutive curve to models corresponding to different threshold strain. Based on the definition of damage index in ABAQUS, the damaged evolution equation in ABAQUS is recalculated based on the optimized constitutive relation. the concrete damaged plasticity model in ABAQUS is obtained using the aforementioned method. And the concrete damaged plasticity model is applied to three compression member and three simply supported beams with different reinforcements. The calculated stress-strain curve and deformation of three compression member and three beams is in accordance with the deformation characteristics of experiments, which verified the effectiveness of the proposed concrete damaged plasticity model of RPC.


Sign in / Sign up

Export Citation Format

Share Document