Seismic Performance of a Concrete Highway Tunnel Using a Concrete Damage Plasticity Model

2016 ◽  
Vol 711 ◽  
pp. 966-973
Author(s):  
Joanna M. Dulinska ◽  
Izabela J. Murzyn

In the paper a non-linear dynamic response of a concrete highway tunnel to a natural earthquake is presented. The acceleration time history of the registered shock was applied as seismic excitation acting in three directions. The peak ground acceleration (PGA) of the shock was 0.5 g. A three-dimensional FE model of the concrete tunnel section (600 m long) and surrounding soil layers was created with the ABAQUS software. To represent the inelastic behavior of the tunnel under the earthquake, a concrete damage plasticity model was assumed as a constitutive model for the concrete. A model of spatially varying ground motion, which takes so called “wave passage effect” was implemented for the dynamic analysis. Two velocities of seismic wave propagation were assumed: 500 and 1000 m/s. These velocities are typical for soft and stiff bedrock, respectively. It turned out that in case of stiffer bedrock, in which seismic waves propagate faster, the damage pattern shows less cracking than in case of soft bedrock. The distribution of plastic and damage computed indices also allowed to assess the impact of the shock on the structure. It turned out that the analyzed shock with PGA of 0.5 g was strong enough to cause severe destruction (cracking) in the tunnel lining. Finally, the transverse pattern of cracks, that was obtained from the calculations, was in good agreement with damages observed during severe earthquakes.

2016 ◽  
Vol 725 ◽  
pp. 110-115
Author(s):  
Joanna M. Dulinska ◽  
Izabela J. Murzyn

The aim of this paper was to investigate the dynamic response of a concrete tunnel subjected to mainshock–aftershock seismic sequence. Three components of the registered seismic saquence were applied as seismic excitation acting in three directions. A three-dimensional FE model of a tunnel section (600 m long) was prepared with the ABAQUS software. The soil layers interacting with the tunnel lining were also taken into consideration. To represent the inelastic behavior of the concrete material under the earthquakes, a concrete damage plasticity model (CDP) was assumed a constitutive model for the concrete. The analysis proved that strongly nonlinear behaviour of the concrete lining of the tunnel was observed under the sequence of seismic events. The plastic strains as well the tensile damage (cracking) were noticed in some zones of the concrete lining after the first and the second event. The crack patterns were in good agreement with damages observed on concrete tunnels during real earthquakes. The results indicate that aftershocks can enlarge zones affected by irreversible strains or cause damage evolution. The analysis also revealed that aftershocks, even being much weaker than main events, may result in additional loss of concrete material strength while performing in mainshock-aftershock seismic sequences and striking a structure which is already degraded by a mainshock.


2018 ◽  
Vol 211 ◽  
pp. 09002
Author(s):  
Rafał Ciura ◽  
Izabela Drygała ◽  
Joanna M. Dulinska

In this paper, the investigation of the dynamic response of a cable-stayed footbridge with steel reinforced concrete deck to foreshocks, a mainshock and an aftershock seismic sequence is delivered. For the aim of the study the finite element (FE) model was prepared with the ABAQUS/Standard software program. The representative seismic events with three components were taken into account in the numerical simulation. For the evaluation of seismic-induced damages in reinforced concrete deck of the footbridge, the concrete damage plasticity (CDP) model was applied.


Author(s):  
Mohammad Reza Azadi Kakavand ◽  
Ertugrul Taciroglu

AbstractSome of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes, while a few more advanced models employ two damage variables. Models with a single variable have an inherent difficulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners, and their mutual dependencies. In the current models that adopt two damage variables, the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa. This study presents a cyclic model established by extending an existing monotonic constitutive model. The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response. The proposed model, dubbed the enhanced concrete damage plasticity model (ECDPM), is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics. Unlike most prior studies on models in the same category, the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression. The performance of the model is observed to be satisfactory. Furthermore, the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.


2019 ◽  
Vol 275 ◽  
pp. 02016
Author(s):  
Ben-ben Li ◽  
Hai-bei Xiong ◽  
Jia-fei Jiang ◽  
Yang Zhan

This paper presents a modified concrete damage plasticity model (CDPM) for passively confined concrete within the concrete damage plasticity theory frame in ABAQUS. The modified CDPM can be used to simulate concrete under non-uniform passive confinement, for example, Fiber-reinforced polymer (FRP)-confined square concrete columns. The modification of CDPM includes a flow rule and a strain hardening/softening criterion in which dilation angle and yield stress are important parameters. Based on the true-triaxial experiment results of passively confined concrete, the dilation angle and yield stress were determined considering different confinement stiffness and non-uniform confinement stiffness ratio. Finally, the modified CDPM were incorporated in the ABAQUS model. The prediction of the finite element model of FRP-confined square concrete columns shows good prediction accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gaosheng Wang ◽  
Yunhou Sun ◽  
Ao Zhang ◽  
Lei Zheng ◽  
Yuzheng Lv ◽  
...  

Based on experiments and finite element analysis, the impact resistance of metal flexible net was studied, which can provide reference for the application of metal flexible net in rock fall protection. The oblique (30 degrees) impact experiment of metal flexible net was carried out, the corresponding finite element (FE) to the experiment was established, and the FE model was verified by simulation results to the experimental tests from three aspects: the deformation characteristics of metal flexible net, the time history curves of impact force on supporting ropes, and the maximum instantaneous impact force on supporting ropes. The FE models of metal flexible nets with inclination angles of 0, 15, 30, 45, 60, and 75 degrees were established, and the impact resistance of metal flexible nets with different inclination angles was analyzed. The research shows that the metal flexible net with proper inclination can bounce the impact rock fall out of the safe area and prevent rock fall falling on the metal flexible net, thus realizing the self-cleaning function. When the inclination angle of the metal flexible net is 15, 30, and 45 degrees, respectively, the bounce effect after impact is better, the remaining height is improved, the protection width is improved obviously, and the impact force is reduced. Herein, the impact force of rock fall decreases most obviously at 45 degrees inclination, and the protective performance is relatively good.


Sign in / Sign up

Export Citation Format

Share Document