Optimal Coil Transducer Geometry for an Electromagnetic Nonlinear Vibration Energy Harvester

2013 ◽  
Vol 558 ◽  
pp. 477-488
Author(s):  
Luke A. Vandewater ◽  
Scott D. Moss ◽  
Steve C. Galea

This paper investigates the optimisation of wire-coil transducers for a recently described strongly nonlinear electromagnetic (EM) vibration energy harvester, by coupling previously derived dynamics of the mechanical system with finite element analysis (FEA) to determine the harvesters EM response. The harvester is implemented in a permanent-magnet/ball-bearing arrangement, where vibrations in a host structure induce oscillations of the ball-bearing. The movement of the bearing changes the magnetic flux in a circular pancake wire-coil, inducing an electromotive force (EMF) in the coil and hence a voltage in the harvester circuit. A quintic-modified Duffing equation is applied to predict frequency-displacement relations for the nonlinear dynamics of the harvester. Faradays Law of Induction is implemented with quasi-static FEA modelling of the magnetic field and linked to the dynamics of the system to develop a numeric model for voltage predictions. The issue of back-EMF and damping is also investigated. A fully integrated mechanical-electromagnetic model is shown to compare well to the quasi-static numerical model. The output characteristics of the prototype harvester are then compared with the numerical model. An optimal coil height of 2 mm is predicted, and demonstrated experimentally to produce 20.3 mW from a 12 Hz, 500 milli-g host vibration. Further investigation of coil inner radius and outer radius yields a predicted resistive load power transfer increase of 18% with the optimal coil geometry.

Author(s):  
S. D. Moss ◽  
L. A. Vandewater ◽  
S. C. Galea

This work reports on the modelling and experimental validation of a bi-axial vibration energy harvesting approach that uses a permanent-magnet/ball-bearing arrangement and a wire-coil transducer. The harvester’s behaviour is modelled using a forced Duffing oscillator, and the primary first order steady state resonant solutions are found using the homotopy analysis method (or HAM). Solutions found are shown to compare well with measured bearing displacements and harvested output power, and are used to predict the wideband frequency response of this type of vibration energy harvester. A prototype harvesting arrangement produced a maximum output power of 12.9 mW from a 12 Hz, 500 milli-g (or 4.9 m/s2) rms excitation.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Hong-Xiang Zou ◽  
Wen-Ming Zhang ◽  
Ke-Xiang Wei ◽  
Wen-Bo Li ◽  
Zhi-Ke Peng ◽  
...  

In this paper, a novel piezoelectric vibration energy harvester using rolling mechanism is presented, with the advantage of harvesting more vibration energy and reducing the impact forces caused by the oscillation. The design utilizes an array arrangement of balls rolling the piezoelectric units, and a piezoelectric unit consists of a piezoceramic (PZT) layer and two raised metal layers bonded to both sides of the PZT layer. The rolling mechanism converts the irregular reciprocating vibration into the regular unidirectional rolling motion, which can generate high and relatively stable rolling force applied to the piezoelectric units. A theoretical model is developed to characterize the rolling mechanism of a ball rolling on a piezoelectric unit. And based on the model, the effects of structural design parameters on the performances of the vibration energy harvester are analyzed. The experimental results show that the rolling-based vibration energy harvester under random vibration can generate stable amplitude direct current (DC) voltage, which can be stored more conveniently than the alternating current (AC) voltage. The experimental results also demonstrate that the vibration energy harvester can generate the power about 1.5 μW at resistive load 3.3 MΩ while the maximal rolling force is about 6.5 N. Due to the function of mechanical motion rectification and compact structure, the rolling mechanism can be suitable for integrating into a variety of devices, harvesting energy from uncertain vibration source and supplying electric energy to some devices requiring specific voltage value.


2016 ◽  
Vol 83 (12) ◽  
Author(s):  
Hong-Xiang Zou ◽  
Wen-Ming Zhang ◽  
Ke-Xiang Wei ◽  
Wen-Bo Li ◽  
Zhi-Ke Peng ◽  
...  

In this paper, a compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms is proposed. The structure consists of a cantilever with a magnet fixed at its free end, and a flextensional actuator with a magnet fixed at its free end. A theoretical model is developed to characterize the compressive-mode wideband vibration energy harvester. Both simulations and experiments are carried out to validate the design and analysis of the compressive-mode wideband vibration energy harvester. The results show that the device can work in broadband, and the piezoelectric constant d31 can be enlarged 134 times. The experimental results also indicate that the harvester can generate the power about 31 μW with the resistive load 390 kΩ, while the magnetic pressure is 2.9 N. A developed design including two flextensional actuators symmetrically arranged is also presented. The experimental results show that the two flextensional actuators in the developed design can harvest more energy than one flextensional actuator in the primal design.


Author(s):  
Jianyong Zuo ◽  
Jie Yu ◽  
Cheng Liu ◽  
Yihao Gu ◽  
Lei Zuo ◽  
...  

Abstract Railroad vibration energy harvester has been researched and developed to harness the energy from the vibration of railway track when the trains pass. The vibrational energy could be transformed into electrical energy using mechanical motion rectification (MMR) mechanism and then further be used to power trackside equipment including sensors and some smart electrical devices. In order to test the performance of the MMR railroad energy harvesting system, a series of infield tests were conducted with a self-developed distributed measurement system in Railroad Test Lab at Tongji University. A 10V peak voltage was achieved with 8 Ohms external resistive load at the train speed of 30 km/h, which was consistent with the result of in-lab bench tests. In addition, some experience of design and installation for the motioned based energy harvesting system was gained, which can provide some references for the future improvement of railroad energy harvesting systems.


2010 ◽  
Vol 44-47 ◽  
pp. 1465-1469
Author(s):  
Ai Min Hu ◽  
Ming Long

The working principle of piezoelectric vibration energy harvester is described. A piezoelectric cantilever and mass composite structure is proposed to harvest vibration energy in resonance mode, and the mass is added on the edge of the cantilever to decrease the natural frequency of the whole structure. The finite element analysis was carried out on the composite structure using the ANSYS software. The displacement results were obtained by structural analysis, and the first order natural frequency was also obtained by modal analysis. Finally, the influence rules among the structural parameters, such as length and width of the cantilever, length and thickness of the mass and width of the PZT, and the natural frequency, piezoelectric output voltage are discussed in detail. Finally, the optimal structure of the harvester is obtained.


2018 ◽  
Vol 85 (9) ◽  
pp. 580-589 ◽  
Author(s):  
Slim Naifar ◽  
Sonia Bradai ◽  
Christian Viehweger ◽  
Slim Choura ◽  
Olfa Kanoun

Abstract A novel magnetoelectric (ME) vibration energy harvester employing magnetostrictive and piezoelectric laminate composite transducers is presented for potentially powering wireless sensor systems. The harvester consists of two four-layered Terfenol-D/PZT laminate composite and a magnetic circuit composed by two parallel magnetic springs and two rectangular magnets. The repulsive forces are realized by a magnetic spring for more robustness. In order to realize a high power density, a multiple transducer design with a lateral configuration is proposed. The magnetic flux density and the induced displacement in the magnetostrictive layers are investigated by finite element analysis to determine the optimal relative position of the twin transducers at the static equilibrium. Furthermore, the output characteristics of the harvester are experimentally studied and compared to the case when only a single transducer is used. The experimental results show that the twin lateral converter can provide a higher power outcome especially if operated at resonance. In addition, doubling the amplitude of vibration from 0.5 mm to 1 mm leads to a voltage output which is four times higher at resonance.


Sign in / Sign up

Export Citation Format

Share Document