Reliability Prediction of Bridges Based on Monitored Data and Bayesian Dynamic Models

2013 ◽  
Vol 574 ◽  
pp. 77-84 ◽  
Author(s):  
Xue Ping Fan ◽  
Da Gang Lu

Bridges are subjected to time-dependent loading and strength degradation processes. The main purposes of the designers and the owners are to keep these processes under control, to real-timely know and predict the structural time-variant reliability indices through health monitoring for bridge structures. The sensors of monitoring systems used in structural engineering provide data used for reliability prediction. But how to make use of monitored data to predict and make assessment of the time-variant reliability indices of bridges has become the bottleneck in the field of structural health monitoring (SHM). Bayesian dynamic models can combine the structural monitoring information with the structural reliability, and also can consider the uncertainty of the mass monitoring information. Therefore, in this paper firstly the bayesian dynamic model is built based on the monitoring information; secondly the monitoring mechanism of the monitoring information is given based on the built bayesian dynamic model; thirdly structural reliability indices are predicted based on the monitoring information and the built bayesian dynamic models; finally an actual example is provided to illustrate the feasibility and application of the built bayesian dynamic models in this paper.

2016 ◽  
Vol 15 ◽  
pp. 119-132 ◽  
Author(s):  
Xue Ping Fan ◽  
Yue Fei Liu

In the long-term monitoring period, the structural health monitoring (SHM) system produces a huge amount of monitoring data. It becomes a very important thing that how to real-timely predict structural reliability indices from such huge number of monitored data. In this paper, To real-timely predict reliability of bridge members with real-time monitoring information, with the long-term mass monitored data of health monitoring system, the data-based dynamic model including observation equation and state equation is built, and then the mixed Gaussian particle filter (MGPF) is introduced. With particle filter method, Bayesian method and dynamic model, the posteriori distribution parameters of state variable and one-step forward prediction distribution parameters of monitored data are predicted. Through resampling technique, with MGPF, the prediction precision of dynamic model can generally increase. Based on the dynamic monitored data, the weights of resampled particles can be constantly updated. Therefore the problem of particle degradation is solved. Finally based on the real-time predicted distribution parameters, with the first order second moment (FOSM) method, the dynamic reliability of bridge member is predicted, and an actual example is provided to illustrate the application and feasibility of the proposed models and methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xueping Fan ◽  
Yuefei Liu

Bridge health monitoring system has produced a huge amount of monitored data (extreme stress data, etc.) in the long-term service periods; how to reasonably predict structural dynamic reliability with these data is one key problem in structural health monitoring (SHM) field. In this paper, considering the coupling, randomness, and time variation of SHM data, firstly, the coupled extreme stress data, which are considered as a time series, are decoupled into high-frequency and low-frequency data with the moving average method. Secondly, Bayesian dynamic linear models (BDLM) without priori monitoring error data (e.g., unknown monitored error variance) are built to dynamically predict the decoupled extreme stress; furthermore, the dynamic reliability of bridge members is predicted with the built BDLM and first-order second moment (FOSM) reliability method. Finally, an actual example is provided to illustrate the feasibility and application of the proposed models and methods. The research results of this paper will provide the theoretical foundations for structural reliability prediction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Jiang ◽  
Yating Shi ◽  
Dehua Zou ◽  
Hongwei Zhang ◽  
Hong Jun Li

Purpose The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript. Design/methodology/approach Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB. Findings The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque. Originality/value Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.


Author(s):  
Qian Wang ◽  
Chenkun Qi ◽  
Feng Gao ◽  
Xianchao Zhao ◽  
Anye Ren ◽  
...  

The contact process of a space docking device needs verification before launching. The verification cannot only rely on the software simulation since the contact dynamic models are not accurate enough yet, especially when the geometric shape of the device is complex. Hardware-in-the-loop simulation is a choice to perform the ground test, where the contact dynamic model is replaced by a real device and the real contact occurs. However, the Hardware-in-the-loop simulation suffers from energy increase and instability since time delay is unavoidable. The existing delay compensation methods are mainly focused on a uniaxial or three-dimensional contact. In this paper, a force-based delay compensation method is proposed for the hardware-in-the-loop simulation of a six degree-of-freedom space contact. A six degree-of-freedom dynamic model of the spacecraft motion is derived, and a six degree-of-freedom delay compensation method is proposed. The delay is divided into track delay and measurement delay, which are compensated individually. Experiment results show that the proposed delay compensation method is effective for the six degree-of-freedom space contact.


Author(s):  
Mortadha Graa ◽  
Mohamed Nejlaoui ◽  
Ajmi Houidi ◽  
Zouhaier Affi ◽  
Lotfi Romdhane

In this paper, an analytical reduced dynamic model of a rail vehicle system is developed. This model considers only 38 degrees of freedom of the rail vehicle system. This reduced model can predict the dynamic behaviour of the rail vehicle while being simpler than existing dynamic models. The developed model is validated using experimental results found in the bibliography and its results are compared with existing more complex models from the literature. The developed model is used for the passenger comfort evaluation, which is based on the value of the weighted root mean square acceleration according to the ISO 2631 standard. Several parameters of the system, i.e., passenger position, loading of the railway vehicle and its speed, and their effect on the passenger comfort are investigated. It was shown that the level of comfort is mostly affected by the speed of the railway vehicle and the position of the seat. The load, however, did not have a significant effect on the level of comfort of the passenger.


Author(s):  
Jordi Casas

Traditionally traffic demand models require as input the impedance of a demand with respect to the network supply; mode choice or departure choice for example, take into account the travel time for each option. Bearing this in mind, the main criticism of using static models to evaluate travel times is that the estimated travel time could diverge considerably because these models have no capacity constraints. On the other hand, dynamic models, such as mesoscopic models, have a level of detail that is sometimes unnecessarily high for the final requirements. The Quasi-dynamic model developed in Aimsun could contribute to a more realistic estimate of the travel time while avoiding the need for a full dynamic model. This paper presents the integration of a Quasi-dynamic model inside the integrated framework of Aimsun and evaluates a comparison of all models in terms of travel time estimation. The evaluation is performed using real networks validated with real data sets.DOI: http://dx.doi.org/10.4995/CIT2016.2016.4127


Sign in / Sign up

Export Citation Format

Share Document