Mössbauer Spectroscopy and Magnetoelectric Effect Studies of Multiferroic Ceramics Based on BiFeO3

2014 ◽  
Vol 602-603 ◽  
pp. 936-941 ◽  
Author(s):  
Elzbieta Jartych ◽  
Tomasz Pikula ◽  
Karol Kowal ◽  
Agata Lisińska-Czekaj ◽  
Dionizy Czekaj

In this work the results of investigations for (BiFeO3)x(BaTiO3)1-xand Bi1-xNdxFeO3solid solutions are described. Samples were prepared by the conventional solid-state sintering method. X-ray diffraction,57Fe Mössbauer spectroscopy, and magnetoelectric effect measurements were applied as complementary methods to determine the structure and magnetic properties of materials. For (BiFeO3)x(BaTiO3)1-xsolid solutions Mössbauer spectroscopy revealed the relationship between the content of BiFeO3and the magnetic properties of the samples. Moreover, the presence of magnetoelectric coupling in (BiFeO3)x(BaTiO3)1-xsolid solutions was registered at room temperature for the materials sintered at various temperatures. The maximum value of magnetoelectric voltage coefficient was achieved for 0.7(BiFeO3)0.3(BaTiO3) sintered at 1153K. Structure of Bi1-xNdxFeO3solid solutions was investigated in the whole range of concentration. Hyperfine interactions parameters were determined for the first time for these solid solutions.

Nukleonika ◽  
2015 ◽  
Vol 60 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Karol Kowal ◽  
Maciej Kowalczyk ◽  
Dionizy Czekaj ◽  
Elżbieta Jartych

Abstract This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3)x-(BaTiO3)1−x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7) were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD), Mössbauer spectroscopy (MS), and vibrating sample magnetometry (VSM) were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing.


2015 ◽  
Vol 33 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Karol Kowal ◽  
Elżbieta Jartych ◽  
Piotr Guzdek ◽  
Agata Lisińska-Czekaj ◽  
Dionizy Czekaj

AbstractThe aim of the present work was to study magnetoelectric effect (ME) in (BiFeO3)x-(BaTiO3)1-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9) were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K) after initial electrical poling despite that the soaking time was reduced 10 times in this case.


Nukleonika ◽  
2017 ◽  
Vol 62 (2) ◽  
pp. 149-152 ◽  
Author(s):  
Bożena Malesa ◽  
Tomasz Pikula ◽  
Dariusz Oleszak ◽  
Elżbieta Jartych

Abstract In this research, the mechanical activation method is proposed as an alternative process of preparation of the (BiFeO3)1-x-(BaTiO3)x solid solutions with various concentrations of barium titanate (x = 0.1÷0.9). However, mechanical milling itself does not allow obtaining the desired products and additional thermal treatment is needed to complete the solid-state reaction. In the present studies, X-ray diffraction and 57Fe Mössbauer spectroscopy were applied as complementary methods in order to study the structural and magnetic properties of materials. The investigations revealed that an increase of BaTiO3 concentration causes changes in the crystalline and hyperfine magnetic structure of the studied (BiFeO3)1-x-(BaTiO3)x system.


2011 ◽  
Vol 170 ◽  
pp. 165-169 ◽  
Author(s):  
Tahir Ali ◽  
Ernst Bauer ◽  
Gerfried Hilscher ◽  
Herwig Michor

We report on structural and superconducting properties of La3-xRxNi2B2N3- where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3- and Nd3Ni2B2N3- are characterized for the first time. Powder X-ray diffraction confirmed all samples R3Ni2B2N3- with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La3-xRxNi2B2N3- were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3- has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3- exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3- shows ferrimagnetic ordering below TC =17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.


2010 ◽  
Vol 67 ◽  
pp. 59-63 ◽  
Author(s):  
Oleg Ivanov ◽  
Elena Danshina ◽  
Yulia Tuchina ◽  
Viacheslav Sirota

Ceramic solid solutions of (1-x)SrTiO3-(x)BiScO3 system with x=0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 have been for the first time synthesized via solid-state processing techniques. Both of end compounds in this system are not ferroelectric materials. X-ray diffraction analysis revealed that at room temperature the samples under study at x=0.2, 0.3, 0.4 and 0.5 consist of mixture of center-symmetric cubic Pm3m phase and polar tetragonal P4mm phase. Anomalous behaviour of dielectric permittivity and dielectric losses for these samples is found to be specific one for ferroelectrics with diffuse phase transitions. Furthermore, examination of the polarization hysteresis behavior revealed weakly nonlinear hysteresis loops in the ferroelectric phase.


2021 ◽  
Author(s):  
Soji Shimizu ◽  
Akito Miura ◽  
Tebello Nyokong ◽  
Samson Khene ◽  
Nagao Kobayashi

<p>Following the first suggestion of inherent molecular chirality in asymmetrically substituted subphthalocyanines by Torres and co-workers in 2000, elucidation of the relationship between structure and chirality has become an important issue. However, separation of the enantiomers has been prevented by the low solubility of the molecules synthesized to date, and it has not been possible to link the CD signs and intensities to their absolute structures. Recently, we observed that 1,2-subnaphthalocyanines possess two diastereomers with respect to the arrangement of the naphthalene moieties and that these novel chiral molecules exhibit moderate solubility in common organic solvents. This has enabled us to separate all of the diastereomers and enantiomers. The two diastereomers have been completely characterized by NMR spectroscopy and X-ray diffraction analysis. The absorption and magnetic circular dichroism spectra, together with theoretical calculation, reveal a small variation in the frontier molecular orbitals of the 1,2-subnaphthalocyanines compared with conventional subphthalocyanines, except for destabilization of the HOMO–3, which results in a characteristic absorption in the Soret band region. The chirality of 1,2-subnaphthalcyanines, including the CD signs and intensities, is discussed in detail for the first time with enantiomerically pure molecules whose absolute structures have been elucidated by single-crystal X-ray diffraction analysis.</p>


Nukleonika ◽  
2017 ◽  
Vol 62 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Karol Kowal ◽  
Piotr Guzdek ◽  
Maciej Kowalczyk ◽  
Elżbieta Jartych

Abstract In this work the compositional dependence of hyperfine interactions and magnetoelectric coupling in (BiFeO3)x-(BaTiO3)1-x solid solutions where x = 0.5-0.9 fabricated from commercial BaTiO3 in terms of the solid-state sintering method at various temperatures and over different time periods is described. In general, as the content of BaTiO3 increases, a decrease in the hyperfine magnetic field (Bhf) at 57Fe nuclei was observed. However, for samples exhibiting lower homogeneity in which the ions of Bi3+ and Fe3+ are replaced by Ba2+ and Ti4+ with lower probability, higher values of Bhf are obtained. For the sample where x = 0.6 that exhibits the coexistence of rhombohedral, regular and tetragonal phases, the highest value of the αME coefficient (3.57 mV/A) was observed, which is more than three times higher when compared to the hitherto published results.


1936 ◽  
Vol 40 (309) ◽  
pp. 586-621 ◽  
Author(s):  
H. J. Gough ◽  
W. A. Wood

SummaryThe strengths of the metals at present available to industry are of especial importance to the aeronautical engineer who is also in a position to appreciate the need for greatly improved materials, the absence of which often places restriction on much needed developments. Although the materials of the future may become available by the somewhat fortuitous development methods at present employed, it is undeniable that greatly accelerated developments would result if a correct understanding was obtained of the fundamental characteristics of the cohesion and fracture of metals, of which the former belongs to the field of the atomic physicist.It has been found possible, for the first time, to show that failure under static and fatigue stressing is associated with changes in the crystalline structure which are identical. These changes are (1) a dislocation of the initially perfect grains into large components which vary in orientation from that of the internal grain by amounts up to about 2°,(2) the formation of “crystallites,” approximately 10-4 to 10-5 cm. in size, whose orientation varies widely from that of the original grains, and (3) the presence of severe internal stresses in the crystallites. At fracture, whatever the type of applied stressing, the whole of the specimen behaves to the X-ray beam as a medium of crystallites showing marked lattice distortion and oriented completely at random. X-ray diffraction methods are shown to distinguish clearly between the effects of the application of safe and unsafe ranges of stress; the first method that has been successful in this respect.In order to show the relationship between the new work described and previous work dealing with the use of X-rays in studying the deformation characteristics of metals, a preliminary section of the paper deals with cold-rolling and drawing. A survey is also presented of the present position regarding strength and atomic structure, together with references to various theories regarding the imperfections of crystals as encountered in practice. An introductory section describes briefly the atomic structure of metals, as revealed by X-rays.


2014 ◽  
Vol 22 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Ioana A. Gorodea

Abstract Double perovskite-type oxide Ca2BMoO6 materials, where B = Cr, La and Sm, were prepared by the sol-gel auto-combustion method for the first time. The role of different B-site cations on their synthesis, structures, and magnetic properties was investigated. The synthesis progress was followed by the Fourier transform infrared spectroscopy and the samples’ structure was investigated by X-ray diffraction. The increase of the ionic radii B leads to the decrease of the t-value which reflects the structural distortion from the ideal cubic perovskite. Magnetization measurements were made with a SQUID magnetometer. All compounds are ferimagnetic and magnetic properties are indirectly influenced by the distortion degree of the lattice and disorder on the B/B’ positions


In this work, lead free (1-x)(Na0.99K0.01)(Nb0.95Sb0.05)O3-xBaTiO3, where x=0.1, 0.2 ceramic solid solution systems were prepared via solid state sintering method. X-ray diffraction (XRD) reveals that the influence of Ba2+ on crystal structure of the NKNS-xBT (x=0.1, 0.2) solid solutions. PXRD analysis showed that Ba2+ addition into NKNS ceramics caused significant change in crystal symmetry from tetragonal to cubic. The surface morphology of the prepared ceramics were determined by scanning electron microscopic (SEM) measurements and revealed that the uniform distribution of grains. Energy band gap were determined by UV-visible absorption spectrophotometer. Dielectric measurements show the maximum dielectric constant (ε~3044) and temperature (Tm~120°C) at 1 kHz.


Sign in / Sign up

Export Citation Format

Share Document