Error Compensation Technology of Semi-Strapdown MEMS Inertial Measurement System

2014 ◽  
Vol 609-610 ◽  
pp. 1213-1218 ◽  
Author(s):  
Jie Li ◽  
Jing De Zhu ◽  
Li Peng Hou ◽  
Jun Liu

Semi-strapdown inertial measurement method provides a new solution for the high-precision measurement on flight attitude of high-spinning ammunition, while the specific set of components in the semi-strapdown application will cause a series of errors. This paper mainly analyzes the generation mechanism of motor speed fluctuation error and the misalignment error in coupling axis. Then the instantaneous motor speed measurement method based on the high-precision gyroscope is designed and the misalign model of coupling axis is set up, MEMS inertial measurement area centripetal force equation under the condition of high speed is worked out, and accuracy error parameters affecting the measurement are obtained. Finally, the paper provides corresponding error compensation method and comparative tests are conducted. The results show that the compensated system improves the accuracy of attitude angle calculating and the error has been effectively suppressed.

Author(s):  
Qingya Wu ◽  
Qingzhong Jia ◽  
Jiayuan Shan ◽  
Xiuyun Meng

A novel inertial measurement unit scheme with five accelerometers and two gyros (5A2G) is proposed in this paper to achieve high precision measurement in high dynamic environment. The three channels are decoupled during the angular velocity calculation procedure to ensure the precision and efficiency. The yawing and pitching angular velocities are directly measured by gyros, while only the rolling angular velocity is inferred indirectly from the rolling angular information vector composed of rolling angular acceleration and quadratic component of rolling angular velocity. Based on the proposed scheme, the configuration ascertainment problem for acquiring the required installation parameters of accelerometers is transformed into a constraint optimization problem with the objective of minimizing the error of rolling angular information vector. A single channel rolling angular velocity calculation model is then established on the basis of the optimal configuration and the extended Kalman filter algorithm is utilized for state estimation. Simulations are implemented and results indicate that the optimal 5A2G scheme is feasible for high-speed rotating ammunition.


2014 ◽  
Vol 635-637 ◽  
pp. 1128-1131
Author(s):  
Xing Hong Kuang ◽  
Zhe Yi Yao ◽  
Shi Ming Wang

With the development of economy, the global satellite navigation system with its high speed, high efficiency, high precision measurement and positioning a series of significant advantages, favored by various industry data collection and monitoring of personnel resources , the advent of satellite navigation systems to solve a large-scale, rapid and high-precision global positioning problem. Its scope of application has penetrated to the various departments of the national economic and social development in various fields and industries. To be able to monitor the progressive realization of automated data collection and transmission, the urgent need to adopt advanced positioning technology to build real-time location monitoring system PC Based Development Background navigation receiver , an overview of the inter Beidou BD-126 systems and microcontrollers can be serially the basic principle of mouth communication describes the communication protocol Compass BD-126 positioning module and the next crew between the microcontroller to control development in the use of PC positioning system for a detailed description , including the BDS Beidou satellite navigation module and microcontroller serial data communications, microprocessor controlled real-time data display , and so on


Sensors ◽  
2009 ◽  
Vol 9 (11) ◽  
pp. 8810-8823 ◽  
Author(s):  
Carlos Luna ◽  
José Lázaro ◽  
Manuel Mazo ◽  
Angel Cano

Author(s):  
Maoyue Li ◽  
Yonghao Xu ◽  
Zengtao Chen ◽  
Kangsheng Ma ◽  
Lifei Liu

Aiming at some shortcomings of the existing non-contact two-dimensional high-precision measurement methods, this paper proposes a two-dimensional high-precision non-contact automatic measurement method based on the corner coordinates of the image. Firstly, this paper designs a set of simple image acquisition device and explains the advantages of the Canny operator used in the image contour detection algorithm. Subsequently, this paper proposes a dimension calibration algorithm based on image corner coordinates, which can convert the pixel size to the actual size, and achieves the function of the algorithm by hierarchical, multi-step processing of the image. Finally, in order to realize the intelligent positioning and selection of the standard size workpiece position, an automatic measurement and positioning system is designed, which can convert the actual size signal into the pulse time control signal. The experimental results show that the measurement method proposed in this paper has the advantages of fast measurement speed, high robustness, low cost and high degree of automation. When using a black-and-white checkerboard paper with an accuracy of 0.1 mm, the measurement accuracy can reach the micron level.


2021 ◽  
Vol 24 (4) ◽  
pp. 491-497
Author(s):  
Yunxiang Zhang ◽  
Bin Wang ◽  
Lei Zhang

In order to improve the flexibility of GPS measurement, a high-precision GPS measurement method that is not restricted by the geographical location under crowd-sensing technology was proposed. The performance of the crowdsensing network was improved through a regular hexagon-based crowd-smart big data sensing network deployment mechanism. The GPS /SINS/DR fast and high-precision combined measurement methods were used to achieve high-precision measurement without geographical restrictions. It has been verified that the proposed method in this paper has much better stability in the deployment strategy of a regular hexagon than that of the square. The proposed method can achieve fast acquisition of satellite signals and high-precision positioning, and its measurement accuracy in the low-latitude city and high-latitude city is higher than the online measurement method based on Google Earth, indicating that it has significant application value.


Sign in / Sign up

Export Citation Format

Share Document