Intended Dishing in Ring Rolling

2014 ◽  
Vol 611-612 ◽  
pp. 194-201 ◽  
Author(s):  
Joachim Seitz ◽  
Gideon Schwich ◽  
Gerhard Hirt

Ring Rolling is a versatile metal-forming process to manufacture seamless rings of various cross-sectional geometries. Rings with a “dish shape” are used in different areas such as offshore, aeronautics or the energy sector. Current ways to produce dish shaped rings have the disadvantages of limited or inflexible geometries and either high material waste, additional costs for special tools or long process time. Instead, when manufacturing dish shaped rings on conventional radial-axial ring rolling mills, ring producers will be able to expand the range of their products easily. In a prior investigation, the general feasibility of an alternative to the current manufacturing processes was shown in experiments and in finite element method (FEM) simulations, avoiding major additional machining and material costs. Resulting from an analysis of the geometrical requirements and material flow mechanisms for dishing and ring climbing, a rolling strategy was derived, applying a large height reduction of the ring. A major problem of this rolling strategy is that whenever the contact between the ring and the main roll is lost in the process, the ring starts to oscillate around the mandrel and neither dishing nor ring climbing can be observed. In order to ensure a permanent contact between ring and main roll and in order to stabilize the ring in its inclined position in the rolling mill, additional stabilizing measures of the process will be developed and investigated. With the developed FE-model, a stabilizing measure by the use of pressure rolls and automatic guide roll movement for ring climbing was tested and appears promising for the application in a real experimental environment.

2012 ◽  
Vol 504-506 ◽  
pp. 857-862 ◽  
Author(s):  
Ahmad Abrass ◽  
Thomas Kessler ◽  
Peter Groche

For the manufacturing of large quantities of profile-shaped products, the roll forming process represents one of the most effective metal forming technologies. During this process, the sheet metal will be formed into a desired cross-sectional profile using successive pairs of forming rolls. This process is well known as a very complex process in industry because of the multiplicity of the process and design parameters. For that reason, the optimization of roll forming processes using numerical methods like the finite element method is very complex and time-consuming. In this paper, a numerical method will be introduced to accelerate the simulation and to optimize the roll forming process. The newly developed algorithm will be illustrated and validated by analyzing the roll forming process. The details of the FE-model and the numerical algorithm will be described. Furthermore, the results of the numerical simulation with and without the application of the numerical algorithms will be compared. Finally, the process will be optimized using the newly developed method.


2012 ◽  
Vol 190-191 ◽  
pp. 121-125 ◽  
Author(s):  
Shan Yang ◽  
Lin Hua ◽  
Yan Li Song

Fine blanking, as an effective and economy metal forming process, can be used for the manufacturing of helical gears with inclined forming movement. In the present study, a reliable three-dimensional (3D) rigid-plastic finite element (FE) model is developed on the DEFORM-3D platform for rotational fine blanking of a helical gear. Based on this FE model, distributions of different field variables such as metal flow velocity, mean stress and effective strain are obtained, and cut surface features and punch stroke curve are predicted. The results achieved in this study can not only evaluate the capabilities of the rotational fine blanking process of a helical gear, but also provide valuable guidelines and a better understanding of the deformation mechanism of this process.


2013 ◽  
Vol 303-306 ◽  
pp. 2769-2772 ◽  
Author(s):  
Z.H. Guo ◽  
E.L. Wang ◽  
Gang Yao Zhao ◽  
R.Y. Zhang ◽  
P. Fang

The hot power backward spinning(HPBS) of the high strength cast aluminums (HSCA) cylinder is a complex metal forming process. To analysis the plastic deformation of HSCA cylinder in HPBS process, a 3D coupled thermo-mechanical FE model of the process was built under the ABAQUS/explicit environment based on the solution of several key techniques, such as heat boundary condition treating, material properties definition, ALE adaptive meshing technology, etc., and verified by theoretical evaluation. Then simulation and analysis of HPBS of the process were carried out. The results show that the strain gradient which leads to the serious inhomogeneous deformation is produced in the thickness direction of the workpiece during the process.


2007 ◽  
Vol 561-565 ◽  
pp. 1813-1817
Author(s):  
Hong Wei Li ◽  
He Yang ◽  
Zhi Chao Sun ◽  
M. Wang ◽  
Lan Yun Li

Material behaviors of anisotropy and rate sensitivity affect cold ring rolling greatly. So, a self-developed incremental model of rate dependent crystal plasticity (RDCP) is utilized to forecast the deformation characteristics of this forming process based on a 3D FE model under ABAQUS/Explicit environment. The results show that the model of RDCP captures material behaviors of anisotropy and rate sensitivity better in this forming process by the comparison with the model of J2 plasticity; with the decrease of rate sensitivity coefficient, the forming process becomes more unstable with smaller rolling force and growth in ring radial direction; with the increase of feed rate of idle roll, the deformation of ring becomes more even while the rolling force becomes larger.


Author(s):  
S M Panton ◽  
S D Zhu ◽  
J L Duncan

In roll forming, flat strip is progressively deformed by sets of rotating rolls; it is a commercially important metal forming process but not one that has been extensively studied on a scientific basis. This paper introduces a new method of indicating forming severity, the bend angle curve, which shows the bend angle distribution and the geometric restrictions imposed by the shape of the rolls, it includes and extends an existing theoretical model of deformation in the unsupported strip based on a modified minimum energy concept. Experiments were carried out in which a channel section was roll-formed and the shape of the strip measured along the whole deformation region. Good correlation was obtained with the predicted bending angle curve and the results demonstrate the influence of roll diameter as well as cross-sectional shape.


2012 ◽  
Vol 445 ◽  
pp. 3-8 ◽  
Author(s):  
Yusof Daud ◽  
Margaret Lucas ◽  
Khairur Rijal Jamaludin

Finite element (FE) model of die necking process of an aluminium hollow thin cylinder has been developed. The input parameters of material properties and coefficient of friction, µ for the model have been deducted from our previous experimental study. Later the models have been validated against experimental data as reported in the previous studies. For the die necking process, the FE model has successfully to predict how much the original diameter of the aluminium hollow cylinder can be maximised necked with and without applying ultrasonic vibration. FE models showed that the application of ultrasonic vibration during the necking process has reduced buckling of the cylinder body if compared to the necking process without ultrasonic. The benefit of applying ultrasonic vibration in sheet metal forming process has been related to the reduction of interface friction between die and specimen.


2021 ◽  
Author(s):  
Irene Mirandola ◽  
Guido A. Berti ◽  
Roberto Caracciolo ◽  
Seungro Lee ◽  
Naksoo Kim ◽  
...  

Energy prediction and starvation have become an essential part of process planning for the XXI century manufacturing industry due to cost-saving policies and environmental regulations. To this aim, the research presented in this paper details how machine learning-based algorithms can be an effective way to predict and minimize the energy consumptions in the widely spread radial-axial ring rolling (RARR) process. To analyze this bulk metal forming process, 380 numerical simulations have been developed using the commercial SW Simufact Forming 15 and considering three largely utilized materials, the 42CrMo4 steel, the IN 718 superalloy, and the AA6082 aluminum alloy. To create the database for both multi-variable regression and machine learning models, ring outer diameters ranging from 650 mm to 2000 mm and various process conditions including different sets of tool speeds and initial temperatures have been considered. For the case of the multi-variable regression model, to account for all the cross-influences between all the parameters, a second-order function including 26 parameters has been developed, resulting in a reasonable average accuracy (94 %) but also in an impractical huge equation. On the other hand, the machine learning model based on the Gradient Boosting (GB) approach allows obtaining a similar accuracy (96 %) but its compact form allows a more practical utilization and its training can be expanded almost indefinitely, by adding more results from both numerical simulations and experiments. The proposed approach allows to quickly and precisely predict the energy consumption in the RARR process and can be extended to other manufacturing processes.


2016 ◽  
Vol 1140 ◽  
pp. 19-26 ◽  
Author(s):  
Simon Husmann ◽  
Bernd Kuhlenkötter

Seamless rings are applied in several industrial sectors and are mainly produced by radial-axial ring rolling. Ring climbing is one of the most occurring process errors leading to a distortion of the ring’s cross section. This paper presents the determination of the influencing factors and their impact and correlations on the process error of ring climbing via Design of Experiment. The highest impact on the climbing height of a ring has the adjustment of the rolling table and the guide rolls. Relatively low but still noticeable is the influence of the process parameters of the rings displacement and the unequal axial rolling speeds. With this knowledge it will be possible to develop, test and implement a rolling strategy that may reduce or avoid ring climbing successfully.


2017 ◽  
Vol 207 ◽  
pp. 1242-1247 ◽  
Author(s):  
Simon Husmann ◽  
Bernd Kuhlenkötter

Sign in / Sign up

Export Citation Format

Share Document