Application of a Discrete Mesoscopic Finite Element Approach to Investigate the Bending and Folding of Fiber-Reinforced Composite Materials during the Manufacturing Process

2014 ◽  
Vol 611-612 ◽  
pp. 324-331
Author(s):  
Lisa M. Dangora ◽  
James Sherwood ◽  
Cynthia Mitchell

During the manufacturing of fabric-reinforced composite parts using a matched-die compression molding process or liquid composite molding, the fabric may experience local in-plane compressive loads that cause out-of-plane deformations. The waves that result from this outofplane motion can lead to the formation of resin rich pockets (during the infusion stage of a dry fabric) or they may be forced down into a fold by the tooling. Defects such as resin-rich pockets and folds compromise the structural integrity of the formed composite part. Therefore, it is valuable to have a simulation tool that can accurately capture the fabric bending properties and predict the locations where waves or folds are likely to occur as a result of the manufacturing process. The tool can then be used to investigate changes in the forming parameters such that the development of such defects can be mitigated. A hybrid finite element model used with a discrete mesoscopic approach captures the behavior of continuous fiber-reinforced fabrics where the fabric yarn is represented by beam elements and the shear behavior is implemented in shell elements. User-defined material subroutines describe the mechanical behavior of the beams and shells for their respective contributions to the overall fabric behavior. Simulations are used to demonstrate the ability of the modeling approach to predict the amplitude and curvature of out-of-plane waves. The simulation results are compared with experimental data to show the accuracy of the modeling. Additional models are presented to demonstrate the capability of the simulation tool to capture fabric folding.

2010 ◽  
Vol 97-101 ◽  
pp. 1745-1748
Author(s):  
Gui Yu Li ◽  
Jian Feng Li ◽  
Jie Sun ◽  
Wei Dong Li ◽  
Liang Yu Song

In the present study, the finite element model of machining carbon fiber reinforced aluminum matrix composites with representative fiber orientation of 90 degree is established with the following developments: (i) a Johnson-Cook constitutive model of each component in the multi-phase composite materials; (ii) a failure model of the composite material based on physical separation criterion; (iii) the interface between fiber and matrix defined by a interaction. This simulating method can be developed to each kind of fiber reinforced composite materials.


2018 ◽  
Vol 774 ◽  
pp. 241-246
Author(s):  
Jian Hong Gao ◽  
Xiao Xiang Yang ◽  
Li Hong Huang

The finite element analysis (FEA) is a numerical method for predicting the mechanical property of short fiber reinforced composite usefully. However, as we know, there is always a “jamming” limit when generating fiber architecture expecially in the cases of high volume fraction and high aspect ratio of short fiber. Even if the volume fraction and aspect ratio in finite element model meet the practical requirements, the problem of mesh deformity will always occur which would lead to unconverge of numerical computation. In this work, embedded element technique which will help to reduce the probability of the above two problems is employed to establish the finite element model of short fiber reinforced composite. The effect of edge size, thickness and mesh density of FE models on the elastic modulus were investigated. Numerical results show that the value of elastic modulus mainly depend on the edge size and fiber amount of FE model while the effect of thickness can be neglected. The elastic modulus takes to converge for high element number. An inverse method is proposed to calculate volume fraction of short fibers, by which numerical results agree well with the calculation results of empirical formula based on Halpin-Tsai equation.


Sign in / Sign up

Export Citation Format

Share Document