Orbital Forging of a Ti6Al4V Alloy Jaw Coupling Sleeve

2014 ◽  
Vol 622-623 ◽  
pp. 1228-1234
Author(s):  
Grzegorz Samołyk

The paper presents selected results of a numerical investigation of the orbital forging process for producing a hollow part. This part is a jaw coupling sleeve made of titanium alloy, widely used in the agricultural industry. The FEM simulation was performed based on the following assumptions: (i) the orbital forging process is conducted under hot conditions using an industrial press of MCOF type and (ii) the final part is formed from a special hollow preform. The preform shape was selected such to ensure optimal conditions of the orbital forging process. The aim of the investigation was to identify phenomena which occur during the orbital forging process. The results obtained are thoroughly examined and described.

2013 ◽  
Vol 58 (4) ◽  
pp. 1183-1189 ◽  
Author(s):  
G. Samołyk

Abstract The orbital forging is one of the metal forming processes which enables the manufacture of products through worm or cold working. A characteristic feature of this technological process is the use of a special wobbling motion of one of the tools in order to reduce the required forming force. This is particularly advantageous during the formation of products in the shape of a disc or a flange pin. Unfortunately, typical constraints of cold orbital forging are: uncontrolled buckling, loss of shape stability (“mushroom effect”) and cracks. They depend on the technological parameters of the process and their cause can be explained on the basis of e.g. workpiece stress state analysis, which is a difficult task due to the complexity of orbital forging process. The article discusses the issues of stress and strain in cold orbital forged parts of the flange pin type, made of AlMgSi aluminum alloy. The results of the presented FEM simulation, verified experimentally, explain the influence of the theoretical aspects of this process on its implementation conditions. It is assumed that orbital forging is performed on the PXW-100A press and the numerical model takes into account all possible variants of the process. Debate boils down to discussing the stress and strain state (e.g. analyzing the stress and strain rate fields) occurring in the workpiece in the context of chosen technological parameters and constrains of orbital forging process


2007 ◽  
Vol 26-28 ◽  
pp. 367-371
Author(s):  
Hong Zhen Guo ◽  
Zhang Long Zhao ◽  
Bin Wang ◽  
Ze Kun Yao ◽  
Ying Ying Liu

In this paper the effect of isothermal forging process parameters on the microstructure and the mechanical properties of TA15 titanium alloy was researched. The results of the tests indicate that, in the range of temperature of 850 °C~980 °C and deformation degree of 20%~60%, with the increase of temperature or deformation, as the reinforcement of deformation recrystallization, the primary α-phase tends to the spherical shape and secondary α-phase transforms from the acicular shape to fine and spherical shape with disperse distribution, which enhance the tensile properties at room and high temperature. With the increment of forging times, the spheroidization of primary α-phase aggrandizes and secondary α-phase transforms from spherical and acicular shape to wide strip shape, which decrease the tensile properties at room and high temperature. The preferable isothermal forging process parameters are temperature of 980 °C, deformation degree of 60%, and few forging times.


2016 ◽  
Vol 3 (2) ◽  
pp. 15-00536-15-00536 ◽  
Author(s):  
Makoto NIKAWA ◽  
Hiroki MORI ◽  
Yuki KITAGAWA ◽  
Masato OKADA

2007 ◽  
Author(s):  
Luigino Filice ◽  
Francesco Gagliardi ◽  
Rajiv Shivpuri ◽  
Domenico Umbrello

2020 ◽  
Vol 51 (11) ◽  
pp. 5912-5922
Author(s):  
L. Meng ◽  
T. Kitashima ◽  
T. Tsuchiyama ◽  
M. Watanabe

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 827 ◽  
Author(s):  
Fengyong Wu ◽  
Wenchen Xu ◽  
Zhongze Yang ◽  
Bin Guo ◽  
Debin Shan

In order to manufacture complex curvilinear generatrix workpieces of high-temperature titanium alloy, the hot tensile behavior of Ti55 alloy sheet was tested and the hot press forming process was investigated using Finite Element Method (FEM) simulation and experiment. The hot tensile experiments of Ti55 rolled sheet were conducted at the temperatures of 800–900 °C with the strain rates of 0.001–0.1 s−1. According to the results of hot tensile tests and microstructure evolution, the proper hot press forming parameters were determined as the temperature of 850 °C and the strain rates of 0.001–0.01 s−1. The wrinkling mechanism in the transition region was analyzed and the initial blank sheet geometry was optimized by FE simulation of hot press forming. The two-step hot press forming process was better to produce the complex sheet workpiece of Ti55 alloy than the one-step hot forming scheme, which could restrain the wrinkling trend and ensure the microstructure and mechanical properties of the hot formed workpieces.


2013 ◽  
Author(s):  
Shi-Hong Zhang ◽  
Hai-Yan Zhang ◽  
Hong-Wu Song ◽  
Ming Cheng

2011 ◽  
Vol 675-677 ◽  
pp. 1007-1010 ◽  
Author(s):  
Ali Halouani ◽  
Yu Ming Li ◽  
Boussad Abbès ◽  
Y.Q. Guo

The simplified method called Inverse Approach (I.A.) has been developed by Batoz, Guo et al.[1] for the sheet forming modelling. They are less accurate but much faster than classical incremental approaches. The main aim of the present work is to study the feasibility of the I.A. for the axi-symmetric forging process modelling. In contrast to the classical incremental methods, the I.A. exploits the known shape of the final part and executes the calculation from the final part to the initial billet. Two assumptions are used in this study: the assumption of proportional loading for cold forging gives an integrated constitutive law without considering the strain path and the viscoplasticity, the assumption of contact between the part and tools allows to replace the tool actions by nodal forces without contact treatment. The comparison with Abaqus shows that the I.A. can obtain a good strain distribution and it will be a good tool for the preliminary preform design.


Sign in / Sign up

Export Citation Format

Share Document