The Effect of Isothermal Forging Process Parameters on the Microstructure and the Properties of TA15 Near α Titanium Alloy

2007 ◽  
Vol 26-28 ◽  
pp. 367-371
Author(s):  
Hong Zhen Guo ◽  
Zhang Long Zhao ◽  
Bin Wang ◽  
Ze Kun Yao ◽  
Ying Ying Liu

In this paper the effect of isothermal forging process parameters on the microstructure and the mechanical properties of TA15 titanium alloy was researched. The results of the tests indicate that, in the range of temperature of 850 °C~980 °C and deformation degree of 20%~60%, with the increase of temperature or deformation, as the reinforcement of deformation recrystallization, the primary α-phase tends to the spherical shape and secondary α-phase transforms from the acicular shape to fine and spherical shape with disperse distribution, which enhance the tensile properties at room and high temperature. With the increment of forging times, the spheroidization of primary α-phase aggrandizes and secondary α-phase transforms from spherical and acicular shape to wide strip shape, which decrease the tensile properties at room and high temperature. The preferable isothermal forging process parameters are temperature of 980 °C, deformation degree of 60%, and few forging times.

2010 ◽  
Vol 97-101 ◽  
pp. 301-305
Author(s):  
Hong Zhen Guo ◽  
Xiao Yan Wang ◽  
Zhao Long Zhao ◽  
Tao Wang ◽  
Ze Kun Yao

In this paper the effect of isothermal forging process parameters on the microstructure and the mechanical properties of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was researched. The results of the tests indicate that, in the temperature range of 755~905 °C and the deformation degree range of 20~60 %, with the increase of deforming temperature, the volume of primary α-phases decrease, but the globularization extent of the α-phases increases and partial secondary α-phases transform into equiaxed shape. At the temperature of 860 °C, the alloy exhibits excellent strength and plasticity, as the uniform and fine duplex microstructure formed after isothermal forging. When the deformation degree increased from 20% to 60%, primary and secondary α-phases were gradually broken and the recrystallization energy was continually accumulated, which ceaselessly strengthened the properties of the alloy. With the increase of forging times, the globularization extent of decreases, leaving the chain of α-phases, which damages the strength and plasticity of the alloy.


2010 ◽  
Vol 97-101 ◽  
pp. 153-157
Author(s):  
Tao Wang ◽  
Hong Zhen Guo ◽  
Jian Hua Zhang ◽  
Ze Kun Yao

The microstructures and room temperature and 600°C tensile properties of Ti-5.8Al-4.0Sn-4.0Zr-0.7Nb -0.4Si-1.5Ta alloy after isothermal forging have been studied. The forging temperature range was from 850°C to 1075°C, and the constant strain rate of 8×10-3/S-1 was adopted. With the increase of forging temperature, the volume fraction of primary α phase decreased and the lamellar α phase became thicker when the temperatures were in range of 850°C -1040°C; The grain size became uneven and the α phase had different forms when the forging temperature was 1040°C and 1075°C respectively; The tensile strength was not sensitive to the temperature and the most difference was within 20MPa. Tensile strength and yield strength attained to the maximum when temperature was 1020°C; the ductility decreased with the increase of forging temperature, and this trend became more obvious if forging temperature was above the β-transus temperature.


2013 ◽  
Vol 747-748 ◽  
pp. 860-865 ◽  
Author(s):  
Tao Wang ◽  
Hong Zhen Guo ◽  
Ze Kun Yao ◽  
Zhang Long Zhao ◽  
Shu Hong Fu ◽  
...  

TG6 alloy is a new titanium alloy which has been designed to reach the service temperature of 600°C. The microstructural evolutions of TG6 alloy under different thermal mechanical treatments were studied. It was found that lamellar microstructures with basketweave α lamella are obtained for TG6 alloy forged in β field. The evolution mechanism is transformed from dynamic recrystallization to dynamic recovery and the thickness of α lamella increases with increasing forging temperature. The aspect ratio of α lamella decreases firstly and then increases with increasing deformation degree. Grain boundary α lath appears when the deformation degree is less than 40%. The thermal mechanical treatments, including deformation in β field firstly and then deformation in α+β field result in the transformations of the microstructures drastically. The deformation degree in α+β field decides the final microstructure. The deformation degree of 20% in α+β field results in partial globular α phase.


Alloy Digest ◽  
1968 ◽  
Vol 17 (2) ◽  

Abstract Titanium IA1-8V-5Fe is an all beta type titanium alloy recommended for high temperature fasteners. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-55. Producer or source: Reactive Metals Corporation.


Alloy Digest ◽  
1962 ◽  
Vol 11 (1) ◽  

Abstract Ti-104A is a titanium alloy containing about 2% each of iron, chromium and molybdenum. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-5. Producer or source: Titanium Metals Corporation of America. Originally published July 1954, revised January 1962.


2020 ◽  
Vol 44 ◽  
pp. 24-30 ◽  
Author(s):  
Ruifeng Dong ◽  
Jinshan Li ◽  
Hongchao Kou ◽  
Jiangkun Fan ◽  
Yuhong Zhao ◽  
...  

2021 ◽  
Vol 1035 ◽  
pp. 89-95
Author(s):  
Chao Tan ◽  
Zi Yong Chen ◽  
Zhi Lei Xiang ◽  
Xiao Zhao Ma ◽  
Zi An Yang

A new type of Ti-Al-Sn-Zr-Mo-Si series high temperature titanium alloy was prepared by a water-cooled copper crucible vacuum induction melting method, and its phase transition point was determined by differential thermal analysis to be Tβ = 1017 °C. The influences of solution temperature on the microstructures and mechanical properties of the as-forged high temperature titanium alloy were studied. XRD results illustrated that the phase composition of the alloy after different heat treatments was mainly α phase and β phase. The microstructures showed that with the increase of the solution temperature, the content of the primary α phase gradually reduced, the β transformation structure increased by degrees, then, the number and size of secondary α phase increased obviously. The tensile results at room temperature (RT) illustrated that as the solution temperature increased, the strength of the alloy gradually increased, and the plasticity decreased slightly. The results of tensile test at 650 °C illustrated that the strength of the alloy enhanced with the increase of solution temperature, the plasticity decreased first and then increased, when the solution temperature increased to 1000 °C, the alloy had the best comprehensive mechanical properties, the tensile strength reached 714.01 MPa and the elongation was 8.48 %. Based on the room temperature and high temperature properties of the alloy, the best heat treatment process is finally determined as: 1000 °C/1 h/AC+650 °C/6 h/AC.


2021 ◽  
Vol 1035 ◽  
pp. 305-311
Author(s):  
Qing Shan Liu ◽  
Bo Long Li ◽  
Tong Bo Wang ◽  
Cong Cong Wang ◽  
Peng Qi ◽  
...  

A new type of near α high temperature titanium alloy of Ti-Al-Sn-Zr-Mo-Si-Er was studied. The samples with different primary α phase content were prepared by solid solution at 950 °C/1 h—1010 °C/1 h. The multi-step hot compression experiments were carried out by Gleeble-3500 in a sequence of upper region of α + β phase, then followed by lower region of α + β phase. The effects of primary α phase content and deformation temperature on the microstructure of the alloy were studied by means of true stress-strain curve and optical microscope. The results show that the content of primary α phase gradually decreases from 45.4% at 950°C to 0% at 1010°C. As the deformation temperature decreases from 940°C to 900°C, the content of α phase increases gradually from 65% to 94%, which is changed from dynamic recrystallization to deformed structure elongated along RD direction. It is found that the arrangement of α phase along RD direction is the longest at 920°C. With the increase of the deformation temperature in the multi-step high temperature region from 970°C to 990°C, the width of deformed α phase decreases from 3.64 μm at 970°C to 2.71 μm at 990°C. The optimized microstructure is composed of 20% primary α phase arranged along RD direction. This process has a certain potential in the process of hot deformation of the alloy. Key words: high temperature titanium alloy, primary α phase, multi-step hot deformation


Sign in / Sign up

Export Citation Format

Share Document