Advanced In-Process Control System for Sheet Stamping and Tube Hydroforming Processes

2014 ◽  
Vol 622-623 ◽  
pp. 3-14 ◽  
Author(s):  
Kenichi Manabe

A sophisticated servo press with the digital control has been developed and attracted attention in recent years. By utilizing its high function in-process, servo presses have a potential to enhance the forming limit and to improve quality and accuracy of product not only in sheet stamping but also in tube hydroforming processes. On the other hand, in-process control and adaptive process control technologies in metal forming processes using intelligent technique and soft computing have been investigated and developed previously. Nowadays we are in a good environment to realize further advanced adaptive in-process control in metal forming process. To further advance this technology, sensing system is essential element and it should be applied to feedback control optimally in their forming operation. This paper describes the current situation on advanced intelligent process control technology for sheet stamping and tube hydroforming processes on the basis of the research results by the author.

2019 ◽  
Vol 28 (6) ◽  
pp. 77-83
Author(s):  
Jorge Carlos León Anaya ◽  
José Antonio Juanico Loran ◽  
Juan Carlos Cisneros Ortega

Numerical analysis for Tube Hydroforming (THF) was developed in this work to predict the behavior of extruded aluminum tube in a forming die for beverage can applications. THF is a metal forming process dependent of three parameters: friction between the tube and the die, internal pressure, and material properties of the tube. Strain hardening is a governing phenomenon that occurs in the plastic deformation process of metals. Hollomon’s equation offers a mathematical description of the metal behavior in the plastic zone. For a proper simulation, experimental determination of the mechanical properties of aluminum 6061-T5 were conducted and test specimens where obtained directly from the aluminum tube. Experimental data were necessary because no sufficient data of the mechanical properties of the tube were available in the literature. Numerical simulations of THF were performed, and the results were compared with analytical results for validation purposes with less than 10% of error.


2005 ◽  
Vol 128 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Bing Li ◽  
Don R. Metzger ◽  
Tim J. Nye

Tube hydroforming is an attractive manufacturing process in the automotive industry because it has several advantages over alternative methods. In order to determine the reliability of the process, a new method to assess the probability of failure is proposed in this paper. The method is based on the reliability theory and the forming limit diagram, which has been extensively used in metal forming as the criteria of formability. From the forming limit band in the forming limit diagram, the reliability of the forming process can be evaluated. A tube hydroforming process of free bulging is then introduced as an example to illustrate the approach. The results show this technique to be an innovative approach to avoid failure during tube hydroforming.


2015 ◽  
Vol 60 (3) ◽  
pp. 1881-1886
Author(s):  
J. Adamus ◽  
K. Dyja ◽  
M. Motyka

Abstract The paper presents a method for determining forming limit curves based on a combination of experiments with finite element analysis. In the experiment a set of 6 samples with different geometries underwent plastic deformation in stretch forming till the appearance of fracture. The heights of the stamped parts at fracture moment were measured. The sheet - metal forming process for each sample was numerically simulated using Finite Element Analysis (FEA). The values of the calculated plastic strains at the moment when the simulated cup reaches the height of the real cup at fracture initiation were marked on the FLC. FLCs for stainless steel sheets: ASM 5504, 5596 and 5599 have been determined. The resultant FLCs are then used in the numerical simulations of sheet - metal forming. A comparison between the strains in the numerically simulated drawn - parts and limit strains gives the information if the sheet - metal forming process was designed properly.


2012 ◽  
Vol 502 ◽  
pp. 369-375
Author(s):  
Guo Feng Yi ◽  
Yu Qi Liu ◽  
Ting Du

A improved algorithm to optimize the restraining force of equivalent drawbead was proposed base on BGFS(Broyden-Fletcher-Goldfarb-Shanno) algorithm combined with a simplified finite element method called inverse approach(IA). The forming limit curve (FLC) and the wrinkle limit curve (WLC) were considered as the objective function to reflect the influence of Fracture and wrinkle defect in sheet metal forming process. The optimized result was more accurate than those procedures only consider the variation of thickness distribution. The optimized process was also very efficient due to the simplified assumptions of the IA. Two stamping parts were presented to validate the accuracy of this optimum algorithm.


Author(s):  
Gracious Ngaile ◽  
Chen Yang ◽  
Obadiah Kilonzo

Tube hydroforming (THF) is a metal-forming process that uses a pressurized fluid in place of a hard tool to plastically deform a given tube into a desired shape. In addition to the internal pressure, the tube material is fed axially toward the die cavity. One of the challenges in THF is the nonlinear and varying friction conditions at the tube-tool interface, which make it difficult to establish accurate loading paths (pressure versus feed) for THF. A THF process control model that can compensate for the loading path deviation due to frictional errors in tube hydroforming is proposed. In the proposed model, an algorithm and a software platform have been developed such that the sensed forming load from a THF machine is mapped to a database containing a set of loading paths that correspond to different friction conditions for a specific part. A real-time friction error compensation is then carried out by readjusting the loading path as the THF process progresses. This scheme reduces part failures that would normally occur due to variability in friction conditions. The implementation and experimental verification of the proposed model is discussed.


Author(s):  
Gracious Ngaile ◽  
Obadiah Kilonzo ◽  
Chen Yang

Tube Hydroforming (THF) is a metal-forming process that uses a pressurized fluid in place of a hard tool to plastically deform a given tube into a desired shape. In addition to the internal pressure, the tube material is fed axially toward the die cavity. One of the challenges in THF is the nonlinear and varying friction conditions at the tube-tool interface, which make it difficult to establish accurate loading paths (pressure vs feed) for THF. A THF process control model that can compensate for the loading path deviation due to frictional errors in tube hydroforming is proposed. In the proposed model, an algorithm and a software platform have been developed such that the sensed forming load from a THF machine is mapped to a database containing a set of loading paths that correspond to different friction conditions for a specific part. A real-time friction error compensation is then carried out by readjusting the loading path as the THF process progresses. This scheme reduces part failures that would normally occur due to variability in friction conditions. The implementation and experimental verification of the proposed model is discussed.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

Sign in / Sign up

Export Citation Format

Share Document