Real-Time Friction Error Compensation in Tube Hydroforming Process Control

Author(s):  
Gracious Ngaile ◽  
Chen Yang ◽  
Obadiah Kilonzo

Tube hydroforming (THF) is a metal-forming process that uses a pressurized fluid in place of a hard tool to plastically deform a given tube into a desired shape. In addition to the internal pressure, the tube material is fed axially toward the die cavity. One of the challenges in THF is the nonlinear and varying friction conditions at the tube-tool interface, which make it difficult to establish accurate loading paths (pressure versus feed) for THF. A THF process control model that can compensate for the loading path deviation due to frictional errors in tube hydroforming is proposed. In the proposed model, an algorithm and a software platform have been developed such that the sensed forming load from a THF machine is mapped to a database containing a set of loading paths that correspond to different friction conditions for a specific part. A real-time friction error compensation is then carried out by readjusting the loading path as the THF process progresses. This scheme reduces part failures that would normally occur due to variability in friction conditions. The implementation and experimental verification of the proposed model is discussed.

Author(s):  
Gracious Ngaile ◽  
Obadiah Kilonzo ◽  
Chen Yang

Tube Hydroforming (THF) is a metal-forming process that uses a pressurized fluid in place of a hard tool to plastically deform a given tube into a desired shape. In addition to the internal pressure, the tube material is fed axially toward the die cavity. One of the challenges in THF is the nonlinear and varying friction conditions at the tube-tool interface, which make it difficult to establish accurate loading paths (pressure vs feed) for THF. A THF process control model that can compensate for the loading path deviation due to frictional errors in tube hydroforming is proposed. In the proposed model, an algorithm and a software platform have been developed such that the sensed forming load from a THF machine is mapped to a database containing a set of loading paths that correspond to different friction conditions for a specific part. A real-time friction error compensation is then carried out by readjusting the loading path as the THF process progresses. This scheme reduces part failures that would normally occur due to variability in friction conditions. The implementation and experimental verification of the proposed model is discussed.


2014 ◽  
Vol 622-623 ◽  
pp. 3-14 ◽  
Author(s):  
Kenichi Manabe

A sophisticated servo press with the digital control has been developed and attracted attention in recent years. By utilizing its high function in-process, servo presses have a potential to enhance the forming limit and to improve quality and accuracy of product not only in sheet stamping but also in tube hydroforming processes. On the other hand, in-process control and adaptive process control technologies in metal forming processes using intelligent technique and soft computing have been investigated and developed previously. Nowadays we are in a good environment to realize further advanced adaptive in-process control in metal forming process. To further advance this technology, sensing system is essential element and it should be applied to feedback control optimally in their forming operation. This paper describes the current situation on advanced intelligent process control technology for sheet stamping and tube hydroforming processes on the basis of the research results by the author.


2019 ◽  
Vol 28 (6) ◽  
pp. 77-83
Author(s):  
Jorge Carlos León Anaya ◽  
José Antonio Juanico Loran ◽  
Juan Carlos Cisneros Ortega

Numerical analysis for Tube Hydroforming (THF) was developed in this work to predict the behavior of extruded aluminum tube in a forming die for beverage can applications. THF is a metal forming process dependent of three parameters: friction between the tube and the die, internal pressure, and material properties of the tube. Strain hardening is a governing phenomenon that occurs in the plastic deformation process of metals. Hollomon’s equation offers a mathematical description of the metal behavior in the plastic zone. For a proper simulation, experimental determination of the mechanical properties of aluminum 6061-T5 were conducted and test specimens where obtained directly from the aluminum tube. Experimental data were necessary because no sufficient data of the mechanical properties of the tube were available in the literature. Numerical simulations of THF were performed, and the results were compared with analytical results for validation purposes with less than 10% of error.


Author(s):  
James Lowrie ◽  
Gracious Ngaile

Due to the increasing demand for small, complex parts, researchers are putting a great deal of effort into applying the metal forming process to the micro and meso world. However, the tube hydroforming process is yet to be fully realized on this small scale because of the difficulties which arise in scaling the conventional tooling to the microscale. This article discusses the difficulties that arise as a result of simply shrinking the traditional hydroforming tools to the microscale. A simple mathematical model is then proposed as a way to help designers determine the limits of the conventional punch with a tapered nose commonly used in tube hydroforming. The model is then validated by performing a finite element analysis of the punch, and the results of the model are discussed in relation to the scaling concepts posed at the beginning of this article. It is determined that as the punch shrinks down, the stresses on the punch rise significantly as a result of changing aspect ratios of the workpiece and the inability to accurately machine very small holes through the punch body. A nonconventional tube hydroforming method may therefore be required to perform micro-tube hydroforming operations, especially on harder materials.


Author(s):  
Angshuman Ghosh ◽  
Karan Deshmukh ◽  
Gracious Ngaile

Tube Hydroforming (THF) is a metal-forming process that uses a pressurized fluid in place of a hard tool to plastically deform a given tube into a desired shape. In addition to the internal pressure, the tube material is fed axially toward the die cavity. This process has various applications in the automotive, aerospace, and bicycle industries. Accurate coordination of the fluid pressure and axial feed, collectively referred to as a loading path, is critical to THF. Workable loading paths are currently determined by trial and error, which can be time consuming. This paper discusses an innovative technique for developing an interactive, real-time database that would be able to predict loading paths for typical classes of THF products and hence, reduce the computational time required. By classifying most of the commercial THF parts into families, parameters such as material properties, part geometry, and tribological factors were simulated by category and stored in the database. Multidimensional cubic spline interpolation was implemented to enable an end user to request from the database a loading path for a wide range of conditions. Test results from the database for different THF families were shown to approximate the simulated results. In addition, by reducing the computation time, the use of interpolation techniques eliminates the need for carrying out multiple simulations for similar THF parts.


2012 ◽  
Vol 538-541 ◽  
pp. 1106-1110 ◽  
Author(s):  
Zhi Hua Tao ◽  
Lian Fa Yang

Tube hydroforming with radial crushing (THFRC) process is one of tube hydroforming methods that is suitable for overlong structure parts forming process avoiding wrinkling and bursting failure. In this paper, the Forming Margin Diagram (FMD) for THFRC process was presented to optimize loading paths. Initially, parameters of Finite Element (FE) simulation in this study were represented, which contained FE model and linear loading paths. Afterwards, boundaries of the FMD were delimited based on real working status. Moreover, curves of corner radius, bursting failure and thickness uniform rate were determined by FE simulation results to establish the FMD, and the curves and zones on the FMD were analyzed simultaneously. Furthermore, features of contour lines were discussed, and the usage of the FMD was introduced.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1518
Author(s):  
Yeong-Maw Hwang ◽  
Yau-Jiun Tsai

Manufacturing of irregular bellows with small corner radii and sharp angles is a challenge in tube hydroforming processes. Design of movable dies with an appropriate loading path is an alternative solution to obtain products with required geometrical and dimensional specifications. In this paper, a tube hydroforming process using a novel movable die design is developed to decrease the internal pressure and the maximal thinning ratio in the formed product. Two kinds of feeding types are proposed to make the maximal thinning ratio in the formed bellows as small as possible. A finite element simulation software “DEFORM 3D” is used to analyze the plastic deformation of the tube within the die cavity using the proposed movable die design. Forming windows for sound products using different feeding types are also investigated. Finally, tube hydroforming experiments of irregular bellows are conducted and experimental thickness distributions of the products are compared with the simulation results to validate the analytical modeling with the proposed movable die concept.


Author(s):  
Reza Pourhamid ◽  
Ali Shirazi

In the present study, the Johnson-Cook damage model is proposed as a comprehensive damage criterion to predict all types of probable failures in tube hydroforming process. Also, the Johnson-Cook material model is used to predict the profile of hydroformed tubes and their dimensions. The validity of numerical results was verified using experimental results obtained in this study. Moreover, because of the importance of friction force in this process, existing between the tube and die, the friction coefficient is determined using the ring compression test, separately. The comparison of experimental and numerical results shows that Johnson-Cook damage model can predict all of the possible failures in tube hydroforming process correctly, both in terms of location and loading conditions. And this model does not predict any failure if, the tube is hydroformed perfectly. Additionally, it was cleared that the Johnson-Cook material model is a proper model to predict the profile of hydroformed tubes with remarkable accuracy. Also, it was found that the loading path and creation of a proper wrinkling have a determinative and vital role in the prosperity of the process.


Sign in / Sign up

Export Citation Format

Share Document