Study on the Mechanical Properties of High Performance Hybrid Fiber Reinforced Cementitious Composite (HFRCC) under Impact Loading

2014 ◽  
Vol 629-630 ◽  
pp. 79-84 ◽  
Author(s):  
Hui Xian Yang ◽  
Jing Li ◽  
Yan Sheng Huang

The dynamic material properties of high performance hybrid fiber reinforced cementitious composites (HFRCC) with various volumetric fractions of steel and polyvinyl alcohol (PVA) fibers were studied by the Split Hopkinson Press Bar (SHPB) test. The results show that HFRCC with higher volumetric fraction of steel fibers are more sensitive to stain rate and the dynamic compressive strength increase more prominently with the strain rate increasing, but peak strain shows the opposite trend. The PVA fibers increase the ductility of HFRCC more effectively than steel fibers. Compared to PVA fiber reinforced cementitious composites (FRCC), HFRCC present better dynamic material properties under impact loading.

2014 ◽  
Vol 893 ◽  
pp. 201-204
Author(s):  
Xiu Ling Li ◽  
Juan Wang

Green high performance fiber reinforced cementitious composites (GHPFRCC) is the optimized mix proportion of engineered cementitious composites (ECC) with high volume of fly ash and polyvinyl alcohol (PVA) fiber. To study the compressive performance, the prism stress-strain relationship of GHPFRCC is the focus in this study. There are sixteen groups of GHPFRCC specimens with the size 40mm×40mm×160mm. The compressive stress-strain curves were obtained based on the uniaxial compression tests. Experimental results show that the uniaxial compression stress-strain curve belongs to the skewed unimodal curve. The peak strain can steadily reach more than 0.005, and it has put up a great plastic deformation capacity and post-peak ductility. It has still reserved some residual strength even when the strain is up to a bigger value. The research achievements can promote the application of GHPFRCC in the practical engineering.


2016 ◽  
Vol 10 (1) ◽  
pp. 482-491 ◽  
Author(s):  
Huixian Yang ◽  
Jing Li ◽  
Yansheng Huang

The Quasi-static mechanical properties of hybrid fiber (steel fiber and Polyvinyl alcohol (PVA) fiber) reinforced cementitious composites (HFRCC(SP)) were investigated by compressive and tensile experiments. The compressive strength, peak strain, elastic modulus and tensile strength are studied as compared with that of engineered cementitious composite (ECC). Study results indicate that steel fibers can improve the compressive and tensile strength of HFRCC(SP) but the peak strain of HFRCC(SP) decreases. The formulas modified based on codes are proposed to calculate compressive peak strain, elastic modulus and tensile strength. The relationship between tensile strain at peak load and tensile strength of HFRCC with different volume fractions of polyethylene fiber and steel fiber were studied and the tensile stress-strain relation was presented. The parameters k1 and k2 of constitutive formulas for fiber reinforced high strength concrete presented by Mansur are modified to describe the stress-strain curve of HFRCC(SP), the modified formulas show good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document