Use of Waste Materials in the Production of Concrete

2014 ◽  
Vol 634 ◽  
pp. 85-96 ◽  
Author(s):  
Jorge Brito ◽  
Rui Silva

The world’s demand for construction aggregates has been increasing over the last years, mainly due to the rapid economic growth of countries such as Brazil, China and India. Naturally, this growth stimulates the development of construction and demolition activities, thereby generating increasing amounts of waste. This paper presents a state-of-the-art review of the experimental research on the effect of incorporating aggregates of different types and shapes, sourced from construction and demolition waste. This review also covers studies on the incorporation of waste materials coming from industrial activities, emphasising those performed in the Instituto Superior Técnico, of the University of Lisbon, Portugal.

Author(s):  
Farzaneh Tahmoorian ◽  
John Yeaman

The growing quantities of waste materials, lack of natural resources and shortage of landfill spaces represent the importance of finding innovative ways of reusing and recycling waste materials. Due to the large quantities of construction and demolition waste (CDW), recycling and utilization of Recycled Construction Aggregates (RCA) obtained from CDW in construction projects, including asphalt pavement construction, can be the most promising solution to this problem. Asphalt mixtures containing RCA have the problem of high bitumen absorption. Using plastic waste in RCA-contained asphalt mixtures reduces not only bitumen absorption but also the adverse environmental impacts associated with plastic waste disposal due to the nonbiodegradability of plastic waste. In addition, the demand reduction for virgin aggregates is another advantage resulting in subsequent economic advantages. This paper characterizes the effects of different types of plastic on the bitumen absorption and properties of asphalt mixtures containing RCA through laboratory investigation. Different types of plastic including High-Density Polyethylene (HDPE) and LowDensity Polyethylene (LDPE) were investigated in this research. The test results indicate that the plastic waste can be a viable material for improving the problem of high bitumen absorption of asphalt mixtures containing RCA.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pritish Gupta Quedou ◽  
Eric Wirquin ◽  
Chandradeo Bokhoree

Purpose The purpose of this paper is to investigate the potential use of construction and demolition waste materials (C&DWM) as an alternative for natural fine aggregates (NFA), in view to solve the disposal problems caused due to landfills. In addition, to evaluate its suitability as a sustainable material, mechanical and durability properties have been performed on different proportions of concrete blending and the results recorded were compared with the reference concrete values. Design/methodology/approach In this research, the NFA were replaced at the proportion of 25%, 50%, 75% and 100% of C&DWM with a constant slump range of 130 mm–150 mm. This parameter will assess the consistency of the fresh concrete during transportation process. The characteristics of the end product was evaluated through various tests conducted on hardened concrete samples, namely, compressive strength, flexural strength, depth of penetration of water under pressure, rapid chloride penetration test, carbonation test and ultrasonic pulse velocity (UPV) test. All results recorded were compared with the reference concrete values. Findings The results demonstrated that the use of C&DWM in concrete portrayed prospective characteristics that could eventually change the concept of sustainable concrete. It was noted that the compressive and flexural strength decreased with the addition of C&DWM, but nevertheless, a continuous increase in strength was observed with an increase in curing period. Moreover, the increase in rapid chloride penetration and decrease in UPV over time period suggested that the concrete structure has improved in terms of compactness, thus giving rise to a less permeable concrete. The mechanical tests showed little discrepancies in the final results when compared to reference concrete. Therefore, it is opined that C&DWM can be used effectively in concrete. Originality/value This study explores the possible utilisation of C&DWM as a suitable surrogative materials in concrete in a practical perspective, where the slump parameter will be kept constant throughout the experimental process. Moreover, research on this method is very limited and is yet to be elaborated in-depth. This approach will encourage the use of C&DWM in the construction sector and in the same time minimise the disposal problems caused due to in landfills.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 207 ◽  
Author(s):  
Dongming Guo ◽  
Lizhen Huang

Construction and demolition waste (C&D waste) are widely recognized as the main form municipal solid waste, and its recycling and reuse are an important issue in sustainable city development. Material flow analysis (MFA) can quantify materials flows and stocks, and is a useful tool for the analysis of construction and demolition waste management. In recent years, material flow analysis has been continually researched in construction and demolition waste processing considering both single waste material and mixed wastes, and at regional, national, and global scales. Moreover, material flow analysis has had some new research extensions and new combined methods that provide dynamic, robust, and multifaceted assessments of construction and demolition waste. In this paper, we summarize and discuss the state of the art of material flow analysis research in the context of construction and demolition waste recycling and disposal. Furthermore, we also identify the current research gaps and future research directions that are expected to promote the development of MFA for construction and demolition waste processing in the field of sustainable city development.


2018 ◽  
Vol 68 (330) ◽  
pp. 151 ◽  
Author(s):  
B. González-Fonteboa ◽  
S. Seara-Paz ◽  
J. De Brito ◽  
I. González-Taboada ◽  
F. Martínez-Abella ◽  
...  

The construction field has contributed to environmental degradation, producing a high amount of construction and demolition waste (C&D waste) and consuming large volumes of natural resources. In this context, recycled concrete (RC) has been recognised as a means to preserve natural resources and reduce space for waste storage. During the last decades, many researchers have developed works studying different recycled concrete properties. This review focuses on structural RC made with coarse recycled aggregate from concrete waste. The main objective is to provide a state of the art report on RC’s properties and an analysis on how to predict them taking into account relevant research works. Moreover, the study tries to collect and update RC findings, proposing equations to define RC’s performance, in terms of mechanical strength, modulus of elasticity, stress-strain, creep and shrinkage.


Sign in / Sign up

Export Citation Format

Share Document