Investigation some Properties of Bismuth Borate Glasses Containing Al2O3

2016 ◽  
Vol 675-676 ◽  
pp. 347-350
Author(s):  
Sopanat Kongsriprapan ◽  
Kanyakorn Teanchai ◽  
Keerati Kirdsiri ◽  
Jakrapong Kaewkhao ◽  
Wichian Siriprom

The glass samples in bismuth borate glass matrix containing Al2O3, with the composition of xAl2O3 : 30Bi2O3 : (70-x)B2O3 where x are Al2O3 concentration varying from 0.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mol%, have been prepared. The obtained glasses were investigated some physical and optical properties. The results showed that the densities increased with increasing of Al2O3 concentration, whereas the molar volumes decreased. For the absorption spectra, no peak in the UV to NIR regions has been observed. Moreover the energy band gap and the refractive index for all samples have been calculated.

2013 ◽  
Vol 770 ◽  
pp. 254-257 ◽  
Author(s):  
Kitipun Boonin ◽  
Onanong Chamlek ◽  
Pruittipol Limkitjaroenporn ◽  
Hong Joo Kim ◽  
Jakrapong Kaewkhao

Bismuth borate glasses doped with cerium in the composition 50Bi2O3:(50-x)B2O3:xCeF3 were prepared for the composition range 0x2.5 (in mol%). The glass samples have been fabricated by the conventional melt quenching technique. The physical and optical properties of glass samples were investigated. The optical absorption spectra of the glasses have been measured in the wavelength range 190-1100 nm and no absorption peak was obtained in this region. The absorption spectra of all samples were shifted to longer wavelength with increasing of CeF3 concentrations. Optical band gap decreased and refractive index increased with increasing of CeF3 concentrations.


2014 ◽  
Vol 92 (10) ◽  
pp. 1154-1157
Author(s):  
G.V. Jagadeesha Gowda ◽  
B. Eraiah

Praseodymium doped silver–borate glasses having composition xPr6O11–(25 – x)Ag2O–75B2O3 (x = 0, 1, 2, 3, 4, 5) were prepared by conventional melt quenching method. The density, molar volume, and optical energy band gap of these glasses were measured. Optical absorption spectra of these glasses were recorded in the range 300–1000 nm at room temperature. The refractive index, molar refraction, and polarizability of oxide ion were calculated by using Lorentz–Lorentz relations. The oxide ion polarizabilities deduced from two different quantities, viz. refractive index and optical energy band gap, agree well compared with other glasses. The variation of the preceding optical parameters with respect to praseodymium concentration is explained.


2019 ◽  
Vol 16 (2) ◽  
pp. 0361
Author(s):  
Mahmood Et al.

      Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO2 , CuO) amount. The effect of mixing concentration on the optical properties of the films was also investigated. The reflectance and transmittance spectra  in the wavelength range (300-1100) nm were employed to determine the optical properties such as energy band gap (Eg) and refractive index (n),  extinction coefficient  (k) , real and imaginary parts of dielectric constants (ε1, ε2) for (SnO2)1-x(TiO2:CuO)x films. The energy band gap omit of which showed reduction from (3.65 to 2.2) eV by reducing of SnO2 amount from (100 to 70) % .The reduction of energy band gap was ascribed to the new tail states introduced in the band gap of tin oxide. The sensitivity of the prepared sensor film was determined resistance difference of the films when exposed to oxidizing gas. The data declared that the mixed SnO2 films have better sensitivity in comparison with unmixed films.


2013 ◽  
Vol 770 ◽  
pp. 153-156
Author(s):  
Onanong Chamlek ◽  
Pruittipol Limkitjaroenporn ◽  
Hong Joo Kim ◽  
Jakrapong Kaewkhao

Neonymium doped bismuth borate glasses with composition 50Bi2O3 : (50-x)B2O3: xNd2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) have been prepared by melt quenching technique. The optical and upconversion luminescence properties of glasses were investigated. The nine absorption peaks were observed, correspond with Nd3+ energy level in glass. The optical band gap decreased with increasing Nd2O3 concentration due to the increase of non-bridging oxygen (NBOs) in glass matrix. The upconversion luminescence emission spectra shows peak at 393 nm, assign to 4D3/24I11/2 transition.


2015 ◽  
Vol 68 ◽  
pp. 27-34 ◽  
Author(s):  
Saisudha B. Mallur ◽  
Tyler Czarnecki ◽  
Ashish Adhikari ◽  
Panakkattu K. Babu

2014 ◽  
Vol 979 ◽  
pp. 98-101 ◽  
Author(s):  
Parnuwat Chimalawong ◽  
Keerati Kirdsiri ◽  
Jakrapong Kaewkhao ◽  
Pichet Limsuwan

Ho3+ doped zinc bismuth borate glasses of the composition 10ZnO : 30Bi2O3 : (60-x)B2O3 : xHo2O3 (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 mol%) were fabricated by conventional melt quenching technique. In order to understand the role of Ho2O3 in these glasses, the density, molar volume and optical spectra were investigated. The molar volume decreases with an increase in Ho2O3 content, which is attributed to the structure becomes more compacted. The absorption spectra of Ho3+ doped in zinc bismuth borate glass correspond to several bands, which are assigned from the ground state, 5I8 to 5G5 (420 nm), 5G6 + 5F1 (451 nm), 5F2 + 5F4 (538 nm), 5F5 (643 nm) and 5I5 (1152 nm). Moreover, the optical basicities were also theoretically determined.


2013 ◽  
Vol 27 (30) ◽  
pp. 1350170 ◽  
Author(s):  
ROSHAN ALI ◽  
R. KHANATA ◽  
BIN AMIN ◽  
G. MURTAZA ◽  
S. BIN OMRAN

Structural, elastic, electronic and optical properties as well as chemical bonding of the binary alkali metal selenides M 2 Se ( M = Li , Na , K , Rb ) were calculated using the full potential linearized augmented plane method. From the elastic constants it is inferred that these compounds are brittle in nature. The results of the electronic band structure show that Na 2 Se has a direct energy band gap (Γ-Γ), Li 2 Se has an indirect energy band gap (Γ- X), while K 2 Se and Rb 2 Se have an indirect energy band gap (X-Γ). Analysis of the charge distribution plots reveals a dominated ionic bonding in the herein studied compounds. Additionally, we have calculated the optical properties, namely, the real and the imaginary parts of the dielectric function, refractive index, extinction coefficient, optical conductivity and reflectivity for radiation up to 30.0 eV. All these compounds have direct energy band gap greater than 3.1 eV suggesting their use for manufacturing high frequency devices.


Sign in / Sign up

Export Citation Format

Share Document