Water Absorption, Friction and Wear Behaviors of Polypropylene Composites Filled with Hydroxyapatite

2017 ◽  
Vol 733 ◽  
pp. 60-64
Author(s):  
Munir Tasdemir ◽  
Ozkan Gulsoy

In the present work, the friction and wear properties of Polypropylene (PP) based composites filled with Hydroxyapatite (HA) particles were studied. Fillers contents in the PP were 10, 20, and 30 wt%. The effects of hydroxyapatite ratio on the water absorption, friction and wear properties of the polymer composites is presented. The result showed that the addition of HA to the composite changed the water absorption, friction coefficient and wear rate.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4547
Author(s):  
Bin Yang ◽  
Aiqin Wang ◽  
Kunding Liu ◽  
Chenlu Liu ◽  
Jingpei Xie ◽  
...  

SiCp/Al-Si composites with different CeO2 contents were prepared by a powder metallurgy method. The effect of CeO2 content on mechanical properties, friction and wear properties of the composites was studied. The results show that with the increase in CeO2 content from 0 to 1.8 wt%, the density, hardness, friction coefficient of the composites first increases and then decreases, the coefficient of thermal expansion (CTE) and wear rate of the composites first decreases and then increases. When the content of CeO2 was 0.6 wt%, the density and hardness of the composite reached the maximum value of 98.54% and 113.7 HBW, respectively, the CTE of the composite reached the minimum value of 11.1 × 10−6 K−1, the friction coefficient and wear rate of the composite reached the maximum value of 0.32 and the minimum value of 1.02 mg/m, respectively. CeO2 has little effect on the wear mechanism of composites, and the wear mechanism of composites with different CeO2 content is mainly abrasive wear under the load of 550 N. Compared with the content of CeO2, load has a great influence on the wear properties of the composites. The wear mechanism of the composites is mainly oxidation wear and abrasive wear under low load. With the increase in load, the wear degree of abrasive particles is aggravated, and adhesive wear occurs under higher load.


2014 ◽  
Vol 788 ◽  
pp. 621-626 ◽  
Author(s):  
Jing Dan Wei ◽  
Hua Chen

Cu-based friction materials were prepared by powder metallurgy technology. The effect of the graphite on friction and wear properties of materials was investigated. The experimental results indicate that the wear rate of the materials increased with increasing speed. The wear rate of the materials with the graphite with the size of 300~600μm decreased with increasing graphite content, indicating that the graphite size of 300~600μm showed the good lubricating effect. The lubricating film made the friction coefficient decrease. The wear resistance of materials with 100~300μm graphite was degraded at high graphite content, and the graphite size of 100~300μm has bad effect on the strength of materials. The wear debris made the friction coefficient slightly increase with the increase of graphite content. The material with the graphite content of 10% and the graphite size of 300~600μm has the best friction and wear properties.


2020 ◽  
Vol 984 ◽  
pp. 125-130 ◽  
Author(s):  
Tian Guo Wang ◽  
X.Y. Liu ◽  
J.J. Hua

Cu-based friction materials were prepared by powder metallurgy technology. The effect of Fe content on friction and wear properties of Cu-based friction materials has been investigated. The results indicate that Fe content has great effects on the wear ability of Cu-based friction materials. Fe works as frictional component in copper-based friction materials, influening the mechanical and frictional property of materials. With increasing Fe content, the hardness and friction coefficient of Cu-based friction materials stability increase, the wear rate of the friction materials decreases. When Fe content is 6%, the materials posses stably high friction factors, as well as good wear ability.


2014 ◽  
Vol 599-601 ◽  
pp. 153-159 ◽  
Author(s):  
Tao Zeng ◽  
Lin Jiao ◽  
Da Chuan Zhu ◽  
Chen Yang

The friction and wear properties of Cu-Te-Li alloys under dry sliding condition were studied by M-200 wear testing machine. The morphology and chemical composition of worn surfaces were analyzed by SEM and EDS, thus the effect of aging treatment on friction coefficient, wear rate and wear mechanism was discussed. The results showed that Te element could improve the wear resistance of copper alloys. With Te content increasing, the friction coefficient of Cu-Te-Li alloys declined slightly and tended to be stable as a whole, while the wear rate decreased obviously. During the process of dry sliding friction, adhesive wear was the dominant mechanism, with oxidative wear coexisting. But for the Cu-Te-Li alloys after aging treatment, abrasive wear appeared and adhesive wear was intensified, especially at higher friction velocity.


2011 ◽  
Vol 686 ◽  
pp. 401-405 ◽  
Author(s):  
Ning Zhang ◽  
Li Xiang Chen ◽  
Yan Sheng Yin ◽  
Ye Han ◽  
Zong Feng Wang

Hybrid friction materials were manufactured with glass fiber, potassium titanate whisker and aramid fiber as reinforcement and the phenolic resin modified by lumbar pericarps oil as matrix material. The effects of load and sliding distance on friction and wear properties were studied by single variable experiments. The worn surfaces of the samples were studied by Scanning Electron Microscope (SEM). The results showed that friction coefficient and wear rate can be significantly increased when the load was increased up to 250N. The friction coefficient varied between 0.25 and 0.3 while the wear rate reduced to 0.49×10-6 g/(N·m) in the sliding distance longer then 80m. Wear mechanism of samples were to be adhesive and abrasive wear.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1854
Author(s):  
Fei-xia Zhang ◽  
Yan-qiu Chu ◽  
Chang-sheng Li

This paper presents a facile and effective method for preparing Ni/NbSe2 composites in order to improve the wettability of NbSe2 and copper matrix, which is helpful in enhancing the friction-reducing and anti-wear properties of copper-based composites. The powder metallurgy (P/M) technique was used to fabricate copper-based composites with different weight fractions of Ni/NbSe2, and tribological properties of composites were evaluated by using a ball-on-disk friction-and-wear tester. Results indicated that tribological properties of copper-based composites were improved by the addition of Ni/NbSe2. In particular, copper-based composites containing 15 wt.% Ni/NbSe2 showed the lowest friction coefficient (0.16) and wear rate (4.1 × 10−5 mm3·N−1·m−1) among all composites.


2011 ◽  
Vol 311-313 ◽  
pp. 1177-1181 ◽  
Author(s):  
Xing Dong Yuan ◽  
Bin Xu ◽  
Xiao Jie Yang ◽  
Hai Long Ma

The friction and wear properties of Polytetrafluoroethylene (PTFE) coatings before and after gamma irradiation were studied under vacuum conditions. Experimental results indicated that the friction and wear properties of PTFE coatings were improved by gamma irradiation. Results showed that the wear process of PTFE coatings before and after gamma irradiation consists of three stages. The steps for the irradiated PTFE are slightly longer than that for the non-irradiated samples. The friction coefficient of irradiated PTFE coatings reduces slightly compared to that of the non-irradiated samples. The friction coefficients of the PTFE coatings before and after gamma irradiation first increase with the increase of sliding velocity and then decrease with the increase of sliding velocity, and The friction coefficient of PTFE coatings before and after gamma irradiation decreases with the increase of load. The wear of irradiated PTFE coatings is slightly lower than that of non-irradiated PTFE coatings. The wear of PTFE coatings before and after gamma irradiation first decreases with the increase of sliding speed and then increases as the sliding speed increases. The wear of PTFE coatings first decreases with the increase of load and then increases with the increase of load. Scanning electron microscope (SEM) was utilized to investigate the worn surfaces.


2011 ◽  
Vol 175 ◽  
pp. 136-139 ◽  
Author(s):  
Bing Suo Pan ◽  
Xiao Hong Fang ◽  
Ming Yuan Niu

To reduce the friction coefficient between impregnated diamond bit and rock, experiments on addition of graphite to the matrix material of bit cutters were conducted. The cutters were made up of diamond contained working layers and binding layers. The friction and wear properties of cutters and binding layers were investigated using a pin-on-disc friction & wear tester with granite as tribopair. The results showed that with addition of graphite, the hardness and friction coefficient of binding layer decreased, but its wear resistance increased; compared to cutters without graphite, those cutters containing graphite had lower wear loss and friction coefficient and their sliding wear process was much steadier, but diamond protrusion was still normal.


2010 ◽  
Vol 150-151 ◽  
pp. 1106-1109 ◽  
Author(s):  
Yong Kun Wang ◽  
Li Chen ◽  
Zhi Wei Xu

The glass fiber (GF) reinforced epoxy (EP) composites filled by nano-Al2O3, nano-TiO2, nano-SiO2 and multi-walled carbon nanotubes (MWCNTs) were prepared. The friction and wear behavior of composites under dry condition were evaluated with block-on-ring friction and wear tester. The morphologies of the worn surfaces of the composites were analyzed by scanning electric microscopy (SEM). The results show that 0.5 wt% MWCNTs and nano-TiO2 can significantly lower the friction coefficient and specific wear rate of composites, respectively, while 0.5 wt% nano-SiO2 and nano-Al2O3 can slightly lower the friction coefficient and specific wear rate of the composites.


Sign in / Sign up

Export Citation Format

Share Document