Effects of Antioxidants Particle Size on Oxidation Resistance of MgO-C Refractory

2019 ◽  
Vol 821 ◽  
pp. 452-456
Author(s):  
Shu Mao Zhao ◽  
Guo Hui Mei ◽  
Jiu Zhang

In this study, Si and SiC powder with a critical particle size ranged from 0.1 to 0.4mm was added into MgO-C refractory as antioxidants. At 1200°C in air atmosphere, oxidation weight losses of cylindrical specimens with additives were measured and the effective diffusion coefficient of oxygen in refractories was calculated from the results. Thus, the effects of antioxidants particle size on the oxidation resistance were researched. The result shows that the particle size of antioxidant has a considerable influence on oxidation resistance of material. The oxidation resistance of MgO-C refractories increased at first as the critical particle size of Si powder increased from 0.1 to 0.2mm and then decreased as the critical particle size increased up to 0.4mm, while the oxidation resistance of MgO-C refractories decreased as the critical particle size of SiC additives increased from 0.1 to 0.4mm. The minimum effective diffusion coefficients of oxygen in MgO-C refractories added by Si and SiC were 10.90 and 14.09cm2/min, individually.

2020 ◽  
Vol 62 (12) ◽  
pp. 2258-2265 ◽  
Author(s):  
S. V. Vasiliev ◽  
V. I. Parfenii ◽  
E. A. Pershina ◽  
A. S. Aronin ◽  
O. V. Kovalenko ◽  
...  

Author(s):  
Maria F. de Morais ◽  
José R. O. dos Santos ◽  
Marisângela P. dos Santos ◽  
Dyego da C. Santos ◽  
Tiago N. da Costa ◽  
...  

ABSTRACT This study aimed to dry ‘bacaba’ (Oenocarpus bacaba Mart.) pulp under different thermal conditions, fit different mathematical models to the dehydration curves, and calculate the diffusion coefficients, activation energy and thermodynamic properties of the process. ‘Bacaba’ fruits were meshed to obtain the pulp, which was dried at temperatures of 40, 50 and 60 °C and with thickness of 1.0 cm. Increase in drying temperature reduced the dehydration times, as well as the equilibrium moisture contents, and drying rates of 0.65, 1.04 and 1.25 kg kg min-1 were recorded at the beginning of the process for temperatures of 40, 50 and 60 °C, respectively. The Midilli’s equation was selected as the most appropriate to predict the drying phenomenon, showing the highest R2, lowest values of mean square deviation (MSD) and χ2 under most thermal conditions, and random distribution of residuals under all experimental conditions. The effective diffusion coefficients increased with increasing temperature, with magnitudes of the order of 10-9 m2 s-1, being satisfactorily described by the Arrhenius equation, which showed activation energy (Ea) of 37.01 kJ mol-1. The drying process was characterized as endergonic, in which enthalpy (ΔH) and entropy (ΔS) reduced with the increment of temperature, while Gibbs free energy (ΔG) was increased.


2019 ◽  
Vol 20 ◽  
pp. 100108 ◽  
Author(s):  
Valentyn Maidannyk ◽  
Eva Lutjes ◽  
Sharon Montgomery ◽  
Noel McCarthy ◽  
Mark A.E. Auty

Sign in / Sign up

Export Citation Format

Share Document