Damage Evaluation of TBC by Rapid Thermal Cycling Test Utilizing a Laser Irradiation

2019 ◽  
Vol 827 ◽  
pp. 361-366
Author(s):  
Yusuke Hayashi ◽  
Kento Suzuki ◽  
Masayuki Arai ◽  
Kiyohiro Ito ◽  
Tsuyoshi Higuchi ◽  
...  

Thermal barrier coating (TBC) is deposited onto the gas turbine blade surface in order to protect the substrate from high-temperature combustion gas. Cracks and delamination of the ceramic coating which come from high heat flux loading are serious problem in TBC. In this study, the rapid thermal cycling device utilizing laser irradiation was developed. It was then investigated how the damage progresses in the ceramic coating exposed to cyclic rapid thermal loading. As a result, a sintering layer was formed in the surface of the ceramic coating, although such phenomenon was not recognized in TBC sample tested by the conventional thermal cycling test using an electric furnace. It was also revealed from the cross-sectional observation that the vertical crack was initiated at the surface of TBC and propagated into sintering layer. Finally, mechanical factors of those damages from finite element analysis using the TBC model including sintering progress was discussed

2019 ◽  
Vol 2019 (0) ◽  
pp. OS0307
Author(s):  
Yusuke HAYASHI ◽  
Kento SUZUKI ◽  
Masayuki ARAI ◽  
Kiyohiro ITOH ◽  
Tsuyoshi HIGUCHI ◽  
...  

2020 ◽  
Vol 86 (883) ◽  
pp. 19-00426-19-00426
Author(s):  
Yusuke HAYASHI ◽  
Kento SUZUKI ◽  
Masayuki ARAI ◽  
Kiyohiro ITO ◽  
Tsuyoshi HIGUCHI ◽  
...  

1989 ◽  
Vol 9 ◽  
pp. 271-276 ◽  
Author(s):  
M. Ogawa ◽  
M. Seki ◽  
K. Fukaya ◽  
T. Horie ◽  
T. Araki

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000172-000177
Author(s):  
Koji Sasaki ◽  
Noritsuka Mizumura

Traditional thick film technology is widely used in various electronics products. There are two type of paste based on thick film technology. Typically, over 400°C is required for high temperature sintering type which contains glass for adhesion function. It shows high electrical and thermal performance. On the other hand, 150–300°C range process is used for low temperature process type as silver epoxy. In last decade, nano silver technology shows amazing progress to address low temperature operation by low temperature sintering. This paper will discuss the results on fundamental study of newly developed nano silver pastes with unique approach which uses MO (Metallo-organic) technology and resin reinforcing technology. Nano silver pastes contain several types of dispersant as surface coating to prevent agglomeration of the particles. Various coating technique has been reported to optimize sintering performance and stability. MO technology provides low temperature sintering capability by minimizing the coating material. The nano silver pastes show high electrical and thermal performance. However, degradation of die shear strength has been found by thermal cycling test due to the fragility of porous sintered structure. To improve the mechanical property, resin reinforcing technology has been developed. By adding special resin to the pastes, the porous area is filled with the resin and the sintered structure is reinforced. Degradation of die shear strength was not found by thermal cycling test to 1000 cycles. Nano silver pastes using MO technology and resin reinforcing technology will meet lots of requirement on various thick film applications.


2018 ◽  
Vol 15 (4) ◽  
pp. 148-162 ◽  
Author(s):  
John Lau ◽  
Ming Li ◽  
Yang Lei ◽  
Margie Li ◽  
Iris Xu ◽  
...  

Abstract In this study, the reliability (thermal cycling and shock) performances of a fan-out wafer-level system-in-package (SiP) or heterogeneous integration with one large chip (5 × 5 mm), three small chips (3 ×3 mm), and four capacitors (0402) embedded in an epoxy molding compound package (10 × 10 mm) with two redistribution layers (RDLs) are experimentally determined. Emphasis is placed on the estimation of the Weibull life distribution, characteristic life, and failure rate of the solder joint and RDL of this package. The fan-out wafer-level packaging is assembled on a printed circuit board (PCB) with more than 400 (Sn3wt%Ag0.5wt%Cu) solder joints. It is a six-layer PCB. The sample sizes for the thermal cycling test and shock test are, respectively, equal to 60 and 24. The failure location and modes of the thermal cycling test and shock test of the fan-out wafer-level SiP solder joints and RDLs are provided and discussed. 3-D nonlinear finite element models are also constructed and analyzed for the fan-out heterogeneous integration package during thermal cycling and shock conditions. The simulation results are correlated to the experimental results. Finally, recommendations on improving the fan-out wafer-level SiP solder joints and RDLs under thermal and shock conditions are provided.


Sign in / Sign up

Export Citation Format

Share Document