Molecular Imprinting Polymer-Based QCM Sensor for Detection of α-Pinene

2020 ◽  
Vol 840 ◽  
pp. 418-423
Author(s):  
Nur Aisyah Humairah ◽  
Fadlunisa Fadlunisa ◽  
Kiki Amalia Histhiningtyas ◽  
Innas Amaliya Fatyadi ◽  
Roto Roto ◽  
...  

The quartz crystal microbalance (QCM) modified by chitosan/α-pinene, prepared by spin-coating technique has been successfully developed with molecular imprinting polymer (MIP) concept. To remove the template, we carried out two treatments namely heating and vacuum in a desiccator. To find out selectivity of the sensor, the QCM modified with polymer chitosan has been tested with another analyte such as acetone, ethanol, N-amyl alcohol, iso-amyl alcohol. The result shows that chitosan/α-pinene coated QCM sensor can provide a good response as good as sensitivity. The best QCM at heating treatment in a furnace with the decline of frequency is 32 Hz, then the QCM vacuum pumping treatment with decline frequency is 27 Hz.

2021 ◽  
Vol 1023 ◽  
pp. 103-109
Author(s):  
M. Dwiki Destian Susilo ◽  
Teguh Jayadi ◽  
Ahmad Kusumaatmaja ◽  
Ari Dwi Nugraheni

Aflatoxin B1 (AFB1) is one of the mycotoxins with the most dangerous poisons and poses a threat to living things. Several detection methods for Aflatoxin B1 (AFB1) with high sensitivity (LC-MS technique, HPLC, ELISA, etc.) still require lengthy preparation time and are not real-time and portable. Aflatoxin B1 (AFB1) detection is one of the major challenges in the field of food safety because Aflatoxin B1 (AFB1) attacks the food and agricultural products sector. One of the potential sensors that can be used as a base for Aflatoxin B1 (AFB1) detection is the Quartz Crystal Microbalance (QCM) sensor. This study examines the performance of the Quartz Crystal Microbalance (QCM) sensor as one of the Aflatoxin B1 detection techniques through the physical deposition method. The Quartz Crystal Microbalance (QCM) sensor modified uses polyvinyl acetate (PVAc) material as a container to embed a molecular model that will be detected through a molecular imprinting polymer (MIP) process coated on QCM using the electrospinning method. The response results show that the value of the sensor response using the MIP process is more significant than without the MIP process. The sensor characteristics demonstrated by the PVAc/AFB 50 sample have a limit of detection (LOD) value is 0.63 ppb, and a limit of quantitation (LOQ) is 1.91 ppb with a coefficient correlation is 0.97 for testing with a concentration range of 5.0 – 40.0 ppb. Therefore, the MIP process in QCM provides a favorable response for the detection of AFB1 in the future.


2004 ◽  
Vol 16 (11) ◽  
pp. 884-886 ◽  
Author(s):  
J. Pang ◽  
X. Li ◽  
D. Wang ◽  
Z. Wu ◽  
V. T. John ◽  
...  

2011 ◽  
Vol 13 ◽  
pp. 87-92 ◽  
Author(s):  
M.S.P Sarah ◽  
F.S. Zahid ◽  
M.Z. Musa ◽  
U.M. Noor ◽  
Z. Shaameri ◽  
...  

The photoconductivity of a nanocomposite MEH-PPV:TiO2 thin film is investigated. The nanocomposite MEH-PPV:TiO2 thin film was deposited on a glass substrate by spin coating technique. The composition of the TiO2 powder was varied from 5 wt% to 20 wt% (with 5 wt% interval). The concentration of the MEH-PPV is given by 1 mg/1 ml. The current voltage characteristics were measured in dark and under illumination. The photoconductivity showed increment in value as the composition of the TiO2 is raised in the polymer based solution. The absorption showed augmentation as the amount of TiO2 is increased. The escalation of the current voltage is then supported by the results of surface morphology.


2018 ◽  
Vol 5 (1) ◽  
pp. 20-22
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundari C ◽  
Punithavathi K

Thin films of poly (methyl methacrylate) (PMMA) were prepared on cleaned glass slides by using spin coating technique. The prepared films were identified by using FTIR spectrum. Surface morphology of the coated films was studied by using SEM and AFM. Both as grown and annealed films showed smooth and amorphous structure. It also revealed the absence of pits, pin holes and dendritic features in the surface. Both as grown and annealed films showed very low RMS roughness value. The morphology analysis revealed that the prepared film could be used as dielectric layer in thin film transistors and as drug delivery system forwound healing.


Sign in / Sign up

Export Citation Format

Share Document