Prediction of the Fatigue Life of the SAE 5160 Carbon Steel Coil Spring Based on Strain-Life Approach

2020 ◽  
Vol 841 ◽  
pp. 381-386
Author(s):  
Teuku Edisah Putra ◽  
Husaini ◽  
Hary Prakasa

This study aims to identify the effect of road surface to coil spring fatigue life using the strain-life approach. Strain signals were measured by attaching a strain gauge at the critical point of the component. The car was driven on a flat road, as well as uphill, and downhill paths. The results show that the downhill road provided the lowest fatigue life, of 1.5E+4 cycles to failure, which was 53 % lower than that of the uphill and 2,233 % lower than the flat road owing to the braking factor which resulted in a higher stress to the coil spring.

2020 ◽  
Vol 402 ◽  
pp. 33-38
Author(s):  
Teuku Edisah Putra ◽  
Husaini ◽  
Hary Prakasa ◽  
Iskandar Hasanuddin ◽  
Muhammad Rizal ◽  
...  

This study examines the fatigue life of the SAE 5160 carbon steel as the material for an automotive coil spring subjected to road strain. The strain signals were acquired by attaching a strain gauge on the component, driving a car up- and down-hill roads. The results of the fatigue life assessment based on the strain-life approach show that the downhill road resulted in a lifespan of 15,000 cycles to failure, which was 53% lower than the uphill road. This value was a result of braking when the vehicle is moving downhill, causing stress to the component leading to shorter fatigue life.


2020 ◽  
Vol 402 ◽  
pp. 39-44
Author(s):  
Teuku Edisah Putra ◽  
Husaini ◽  
Muhammad Ikbal ◽  
Iskandar Hasanuddin ◽  
Muhammad Rizal ◽  
...  

The purpose of this work was to predict the fatigue life of the AISI 1513 carbon steel due to the strains measured at a vehicle's lower arm. The strain signals were acquired using a strain gauge installed at the lower arm, and then the car was driven at various road surfaces. On the smooth road surface, the car was driven at a speed of > 70 km/h and on the rough road surface, at a speed of < 20 km/h. The results show that when the vehicle was driven on the rough road, the lower arm received higher stress, which provided a shorter fatigue life. The contour of the road surfaces provided a vertical load, directly working the lower arm and reducing the load vertically. The fatigue life for the rough road surface was 13,050 cycles to failure. This value was 91,195% lower than the fatigue life on the smooth road surface.


2020 ◽  
Vol 402 ◽  
pp. 45-49
Author(s):  
Husaini ◽  
Teuku Edisah Putra ◽  
Muhammad Reza Rizky ◽  
Rauzatul Akmal ◽  
Iskandar Hasanuddin ◽  
...  

This study aims to predict the fatigue life of the AISI 1513 carbon steel as the material for the vehicle lower arm subjected to road strains. Measurement of the strain signals was done by attaching a strain gauge at the left lower arm and driving the vehicle on clockwise and counter-clockwise roads at a speed of 30 km/h. According to the results based on the strain-life approach, the clockwise road gave the fatigue life of 2,600,000 cycles to failure, which was 1,862 % lower than the counter-clockwise road. It indicated that when the vehicle turned to the right, the lower arm on the left side subjected to a higher strain, resulting in a shorter fatigue life.


2021 ◽  
Vol 892 ◽  
pp. 124-128
Author(s):  
Harahap Jagodang ◽  
Husaini ◽  
Edisah Putra Teuku ◽  
Dieter Schramm

This study aims to analyze the stress that occurred on the automotive coil spring made of SAE 5160 carbon steel due to various types of road surfaces. The 60-second strain signals measured on a coil spring of a car being driven on a flat, uphill, and downhill road surface were used as the loads in these dynamic analyses. The analysis results showed that the maximum stress occurred on the inside of the spring in the second coil from the top. The results of this dynamic analysis also showed that the three types of road surfaces provided almost the same stress. The downhill road surface gave the highest stress, which was 0.622 GPa, followed by flat road (0.621 GPa) and uphill road (0.62 GPa). The reasons for this are the shifting of the vehicle load to the front wheels together with the braking effect when driving downhill.


2013 ◽  
Vol 471 ◽  
pp. 235-240
Author(s):  
Mahfodzah M. Padzi ◽  
S. Abdullah ◽  
Mohd Zaki Nuawi

This paper describes the correlation between fatigue life with the I-kaz coefficients. Fatigue tests were performed according to the ASTM E466-96 standard with a strain gauge attached to the specimen being tested. AISI 1045 carbon steel was used as the material for this test due to its wide applications in the automotive and machinery industry. Fatigue tests were carried out at several constant loading stresses of 610 MPa, 650 MPa and 690 MPa at the sampling frequency of 8 Hz. A set of data acquisition system was used to collect the fatigue strain signals. The integrated Kurtosis-based algorithm for Z-filter (I-kaz) technique had been used to find the I-kaz coefficient. The I-kaz coefficient is found to have a good correlation with fatigue life, other than can represent fatigue damage.


2013 ◽  
Vol 471 ◽  
pp. 329-334
Author(s):  
M. Mohammad ◽  
Shahrum Abdullah ◽  
Nordin Jamaludin ◽  
O. Innayatullah

The competency of acoustic emission (AE) technique in order to predict the fatigue life of SAE 1045 carbon steel was discussed in this paper. The correlation of the AE parameter and the number of cycles to failure of the tested specimens were established via the statistical approach. In this paper, The AE hits were selected as the functional parameter. The fatigue life values were calculated using the strain-life approach of three models; Coffin-Manson, Smith-Watson Topper and Morrow. Both AE and strain signals used in the analysis were captured using the AE sensor and strain gauge that were attached to the specimen during the fatigue test. The results show that the AE technique has a good potential in assessing the fatigue life with the designed H-N curve (AE hits-number of cycles to failure curve).


Sign in / Sign up

Export Citation Format

Share Document