Research of the Reasons of Frost Destruction of Road Concrete

2020 ◽  
Vol 864 ◽  
pp. 175-179
Author(s):  
Serhij Tolmachov

The article analyzes the causes of the destruction of road concrete in the winter. The basic theories of concrete failure during freezing are presented. Hypothesis of R. Collins according to which the destruction occurs as a result of the pressure of ice, which is formed when water freezes onto the pore walls. The hydraulic pressure hypothesis of T. Powers, according to which the main cause of concrete destruction during cyclic freezing and thawing, is the hydraulic pressure that creates water in the pores and capillaries of concrete under the action of ice. The hypothesis of thermal destruction of concrete due to the difference in the coefficients of linear thermal expansion of its components. In winter, sodium chloride (NaCl) solutions are most often used to combat ice on the surface of road surfaces. Therefore, an important consequence of this may be osmotic pressure. To calculate the osmotic pressure, the Vant-Hoff formula for true solutions was used. The maximum values of the osmotic pressure were determined at temperatures of 255...293 K. The critical concentrations of sodium chloride solutions at which concrete was destroyed were calculated. It was established that at the initial stage of freezing-thawing of concrete with the simultaneous action of an aqueous NaCl solution, the structure of concrete is densified and its strength is increased.

1969 ◽  
Vol 50 (2) ◽  
pp. 327-333
Author(s):  
F. MORIARTY

1. The pattern of water absorption by eggs of Chorthippus brunneus varies greatly between individuals. 2. The time at which water is absorbed does not have a close relationship with the stage of embryonic development. 3. Water absorption is not essential for prediapause development. 4. Eggs can only undergo blastokinesis and further development, after diapause is broken, if some water has been absorbed. 5. The rate of water loss or gain varies with the osmotic pressure of sodium chloride solutions. 6. Eggs which have started to absorb water appear to become desiccated more rapidly than eggs which have not.


Author(s):  
D. N. Davlyud ◽  
P. D. Vorobiev ◽  
Yu. V. Matrunchik ◽  
E. V. Vorobieva ◽  
N. P. Krutko

Dissolution of acrylamide anionic (co)polymers in saline solutions (potassium and sodium chlorides) with concentration of 3.4 mol/l was studied by atomic absorption spectroscopy, optical microscopy, gel-test and capillary viscosimetry. It has been established that with increasing in the content of ionogenic groups and the transition from sodium chloride to potassium chloride solutions the dissolution rate of (co)polymer increases. The concentration of cations of low molecular weight electrolytes is higher in the swollen polymer phase than in the solution in the swelling stage of polymers, the difference in the counter ion content decreases with increasing dissolution time. Comparative analysis of the Huggins constant and the hydrodynamic radii of acrylamide (co)polymers has showed that increase in the interaction in polymer-solvent system is accompanied by the increase in size of macromolecular coils. The Kuhn segment of polymer macromolecules is higher in sodium chloride solutions than in potassium chloride solutions and increases with the decrease in ionogenic group content.


1959 ◽  
Vol 39 (3) ◽  
pp. 384-394 ◽  
Author(s):  
D. H. Heinrichs

Two laboratory experiments were conducted to evaluate the reliability of amount of germination in solutions of varying osmotic pressure, as a means of separating alfalfa varieties into winter-hardiness classes. In one test 23 varieties or strains were studied, and in the other 36. It was found that significant differences exist between certain alfalfa varieties in their ability to germinate in sucrose or sodium chloride solutions of 3, 6, and 9 atmospheres. There is a general tendency for non-hardy varieties to germinate more rapidly and more completely than hardy ones but there are many exceptions to this trend. Germination in solutions of 6 atmospheres osmotic pressure at 5 days gave the best separation of varieties on the basis of their ability to germinate. Germination was generally better in solutions of sucrose at 6 atmospheres osmotic pressure than in solutions of sodium chloride of the same osmotic pressure but several varieties germinated equally well in either solution. The results indicate that germinating alfalfa in sugar or salt solutions is not a reliable method for differentiating alfalfa varieties into winter hardiness classes.


1954 ◽  
Vol 100 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Eugene L. Opie

The osmotic pressure maintained by liver tissue of the white rat preceding birth is less than that of the maternal blood serum and shortly after birth approximates this level. Following birth osmotic pressure of liver tissue, continuing to increase, reaches after about 60 to 90 days the level found in the liver of mature animals and is then isotonic with solutions of sodium chloride with concentration slightly more than twice that isotonic with blood serum. Osmotic pressure maintained by kidney tissue pursues with growth a similar course but at a lower level and about 35 to 60 days after birth reaches that found in the mature animal being represented by isotonicity with a concentration of sodium chloride slightly less than twice that isotonic with blood serum. The tissues of the whole fetus are isotonic with sodium chloride solutions less concentrated than that isotonic with the maternal blood serum.


Soft Matter ◽  
2021 ◽  
Author(s):  
Reinhard Höhler ◽  
Jordan Seknagi ◽  
Andrew Kraynik

The capillary pressure of foams and emulsions is the difference between the average pressure in the dispersed phase and the pressure in the continuous phase.


Author(s):  
Akihiro Yoshimura ◽  
Shunta Tochigi ◽  
Yasunari Matsuno

AbstractIn this research, a recycling process for palladium using “dry aqua regia,” which consists of iron(III) chloride–potassium chloride, was proposed. Palladium was dissolved in “dry aqua regia,” and the dissolved palladium was recovered by leaching with potassium chloride solution with added ammonium chloride and nitric acid. Palladium was almost completely dissolved in 3 h at 600 K, and the recovery ratio of dissolved palladium was up to 80%. In addition, the dissolution of palladium in coexistence with platinum and the dissolution of platinum-palladium alloy by “dry aqua regia” were also tested. The dissolved palladium and platinum were separated and recovered by solid–liquid separation technique using the difference in solubility of their compounds in potassium chloride and sodium chloride solutions. As a result, pure compounds of each element were recovered. This result suggested the possibility of using “dry aqua regia” for the separation of platinum-group metals. Graphical Abstract


2012 ◽  
Vol 253-255 ◽  
pp. 456-461
Author(s):  
Yan Fu Qin ◽  
Bin Tian ◽  
Gang Xu ◽  
Xiao Chun Lu

Frost resistance research is one of the important subject of concrete durability, however strength criteria is an important part of the study of mechanical behavior of concrete. So far, about concrete failure criteria are almost for normal concrete, which the domestic and overseas scholars have comparative detailed research in every respect to it, and to freeze-thaw damage of concrete but few research. Based on the summary of the existing ordinary concrete strength and failure criteria in normal state and after freeze-thaw damage,this paper have a brief comment of failure criteria on concrete after freeze-thaw damage. For later research about concrete strength and failure criteria under freezing and thawing cycle provide the reference.


2017 ◽  
Vol 62 (3) ◽  
pp. 902-912 ◽  
Author(s):  
Jimin Xie ◽  
Min Liu ◽  
Guiqin Liu ◽  
Lixia Yuan ◽  
Dacheng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document