Preparation of Activated Carbon Derived from Water Hyacinth as Electrode Active Material for Li-Ion Supercapacitor

2020 ◽  
Vol 1000 ◽  
pp. 50-57
Author(s):  
Jagad Paduraksa ◽  
Muhammad Luthfi ◽  
Ariono Verdianto ◽  
Achmad Subhan ◽  
Wahyu Bambang Widayatno ◽  
...  

Lithium-Ion Capacitor (LIC) has shown promising performance to meet the needs of high energy and power-density-energy storage system in the era of electric vehicles nowadays. The development of electrode materials and electrolytes in recent years has improvised LIC performance significantly. One of the active materials of LIC electrodes, activated carbon (AC), can be synthesized from various biomass, one of which is the water hyacinth. Its abundant availability and low utilization make the water hyacinth as a promising activated carbon source. To observe the most optimal physical properties of AC, this study also compares various activation temperatures. In this study, full cell LIC was fabricated using LTO based anode, and water hyacinth derived AC as the cathode. The LIC full cell was further characterized to see the material properties and electrochemical performance. Water hyacinth derived LIC can achieve a specific capacitance of 32.11 F/g, the specific energy of 17.83 Wh/kg, and a specific power of 160.53 W/kg.

2020 ◽  
Vol 1000 ◽  
pp. 58-66
Author(s):  
Muhammad Luthfi ◽  
Jagad Paduraksa ◽  
Ariono Verdianto ◽  
Yoyok Dwi Setyo Pambudi ◽  
Bambang Priyono ◽  
...  

Lithium-ion capacitors (LIC) is believed to be an ideal option in certain application as energy storage device due to its properties either possessing high energy density (four times higher than electrical double-layer capacitor) or having as much power density as a supercapacitor. In this study, a biomass-based activated carbon (WHAC) was prepared by using the water hyacinth plant through the activation process utilizing a chemical activating agent, KOH. The water hyacinth was carbonized at 500 °C for a 1 h holding time with a ramping temperature of 10 °C/min. Then, the LICs electrode is constructed by two different types of electrode, WHAC as the main active material of cathode and lithium titanate oxide (LTO) for the anode. The biomass-derived activated carbon exhibits a high specific surface area of 791.8 m2/g and a high pore volume of 1.13 m3/g. The assembled LiCs shows a reasonable electrochemical performance with a maximum specific capacitance of 1.12 F/g with the highest specific energy of 4.48 Wh/kg and specific power of 34.14 W/kg. This LIC cell is one of the promising candidates for future applications due to its low-cost materials and owns more advantages than typical Lithium-ion Batteries (LIBs).


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


2018 ◽  
Vol 398 ◽  
pp. 128-136 ◽  
Author(s):  
Qun Lu ◽  
Bing Lu ◽  
Manfang Chen ◽  
Xianyou Wang ◽  
Ting Xing ◽  
...  

2018 ◽  
Vol 8 (7) ◽  
pp. 1176 ◽  
Author(s):  
Mahdi Soltani ◽  
Jan Ronsmans ◽  
Shouji Kakihara ◽  
Joris Jaguemont ◽  
Peter Van den Bossche ◽  
...  

Public transportation based on electric vehicles has attracted significant attention in recent years due to the lower overall emissions it generates. However, there are some barriers to further development and commercialization. Fewer charging facilities in comparison to gas stations, limited battery lifetime, and extra costs associated with its replacement present some barriers to achieve better acceptance. A practical solution to improve the battery lifetime and driving range is to eliminate the large-magnitude pulse current flow from and to the battery during acceleration and deceleration. Hybrid energy storage systems which combine high-power (HP) and high-energy (HE) storage units can be used for this purpose. Lithium-ion capacitors (LiC) can be used as a HP storage unit, which is similar to a supercapacitor cell but with a higher rate capability, a higher energy density, and better cyclability. In this design, the LiC can provide the excess power required while the battery fails to do so. Moreover, hybridization enables a downsizing of the overall energy storage system and decreases the total cost as a consequence of lifetime, performance, and efficiency improvement. The aim of this paper is to investigate the effectiveness of the hybrid energy storage system in protecting the battery from damage due to the high-power rates during charging and discharging. The procedure followed and presented in this paper demonstrates the good performance of the evaluated hybrid storage system to reduce the negative consequences of the power peaks associated with urban driving cycles and its ability to improve the lifespan by 16%.


Nanoscale ◽  
2018 ◽  
Vol 10 (13) ◽  
pp. 5906-5913 ◽  
Author(s):  
Peng Yu ◽  
Gejin Cao ◽  
Sha Yi ◽  
Xiong Zhang ◽  
Chen Li ◽  
...  

A full-cell lithium-ion capacitor is assembled using a Ti3C2Tx/CNT film as the anode and activated carbon as the cathode.


2019 ◽  
Vol 7 (18) ◽  
pp. 11234-11240 ◽  
Author(s):  
Shida Fu ◽  
Qiang Yu ◽  
Zhenhui Liu ◽  
Ping Hu ◽  
Qiang Chen ◽  
...  

Porous yolk–shell structured Nb2O5 enables a Nb2O5//activated carbon lithium-ion capacitor to exhibit superior energy density and cycling stability.


Author(s):  
Yabin An ◽  
Tengyu Liu ◽  
Chen Li ◽  
Xiong Zhang ◽  
Tao Hu ◽  
...  

As a promising energy storage system, lithium-ion capacitor (LIC) shows tremendous potential for energy storage devices with high energy density and power density. However, limited by the poor rate performance...


Nanoscale ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 7263-7276 ◽  
Author(s):  
Hu-Jun Zhang ◽  
Yun-Kai Wang ◽  
Ling-Bin Kong

A full-cell lithium-ion hybrid capacitor is assembled based on an MoSe2 anode and an activated carbon cathode.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10018-10026
Author(s):  
Chang Liu ◽  
Zeyin He ◽  
Jianmin Niu ◽  
Qiang Cheng ◽  
Zongchen Zhao ◽  
...  

In this work, we have fabricated lithium-ion capacitor using SnO2/PCN as anode and waste coffee grounds derived PCN as cathode, which delivers good combination of high energy and power characteristics.


Sign in / Sign up

Export Citation Format

Share Document