Research on Micro-Size Electrical Discharge Grinding Polycrystalline Cubic Boron Nitride Based on Single Pulse

2021 ◽  
Vol 1035 ◽  
pp. 778-784
Author(s):  
Yun Hai Jia ◽  
Yan Hua Cia ◽  
Qin Jian Zhang

Polycrystalline cubic boron nitride (PcBN) was a high temperature and high pressure composite material with high hardness. With its high wear resistance and good chemical stability, it conforms to the basic characteristics of modern advanced cutting technology of "high efficiency, high precision, high efficiency and green". Currently, it was widely used in the field of ferrous metal cutting tools. Electrical discharge grinding was one of the most effective methods for machining polycrystalline cubic boron nitride cutters. It was especially suitable for machining complex shapes and thin edge cutters. Single pulse electrical discharge grinding is the basis of continuous EDG machining and an effective method to study micro-scale electrical discharge grinding. In this study, the morphology of single pulse discharge corrosion pits and the relationship between discharge parameters and material removal rate, such as the deep-diameter ratio of the corrosion pits, the pulse width and the deep-diameter relationship of the corrosion pits, were studied with the polycrystalline cubic boron nitride composite sheet of 2 micron particle size as the test material and the independently developed single pulse discharge power supply as the device. The experimental results show that the radius and heat affected area of the discharge corrosion pit increase rapidly, then slowly, and finally gradually with the extension of pulse duration. The corrosion depth generally varies gently in the range of 0.2 ~ 0.5 micron, and the pulse duration has no obvious effect on the depth of the discharge corrosion pit. With the extension of pulse duration, the ratio of radius to depth of the corrosion pit changed in the range of 13 ~ 20, and the ratio basically declined.

2019 ◽  
Vol 943 ◽  
pp. 14-19 ◽  
Author(s):  
Yun Hai Jia ◽  
Jian Mei Guo ◽  
Yan Guo ◽  
Fan Yu

With the demand of modern cutting technology for ‘high efficiency, precise, flexibility and green manufacturing’, polycrystalline diamond materials as cutting tools have been widely used in automobile, aerospace and non-metal processing. Electro-spark erosion is one of the most effective ways to machine polycrystalline diamond materials. Single pulse discharge is one of the research foundations of micro-EDM. Using 2 micron granularity polycrystalline diamond as experiment material, the influence of single pulse discharge technology on the removal efficiency of materials was studied, such as pit radius, pit depth and radius-depth ratio, etc. The experimental results show that, with the extension of the pulse duration, the radius of the discharge pit begins to increase rapidly, then slowly increases, and finally to slow down; while the radius of thermal influence zone increases rapidly and then continues to increase slowly. With the extension of pulse duration, the ratio of pit depth to radius changes within the range of 0.05 ~ 0.25, which shows a downward trend basically.


2014 ◽  
Vol 668-669 ◽  
pp. 56-59
Author(s):  
Yun Hai Jia ◽  
Cheng Zhe Guan

Electrical discharge grinding is part of the most widely used methods to machine polycrystalline cubic boron nitride cutting tool. Polycrystalline cubic boron nitride compact samples processed in domestic with different grain size are the research object. Electrode running speed, peak current, and pulse width are selected as the main process parameters. The material removal volume and electrode loss set as the evaluation index of productive efficiency; workpiece surface roughness value sets as an evaluation standard of processing quality. Through electrical discharge grinding experiments, combined with scanning electron microscopy observation, energy spectrum analyzer and roughness tester, the influences of the main process parameters on electrical discharge grinding are analyzed, polycrystalline cubic boron nitride compact electrical discharge grinding technics & mechanism are summarized.


2011 ◽  
Vol 120 ◽  
pp. 311-315 ◽  
Author(s):  
Yun Hai Jia

The samples of Polycrystalline cubic boron nitride (PcBN) cutting tool were machined by adjusting the main parameters of electrical discharge machining (EDM). After the machining, the phases were analyzed by X-ray diffraction analyzer and the surface layer microstructure was observed by scanning electronic microscope. The fundamental component of machined PcBN cutting tool affected layer was obtained and the reason of begetting affected layer was analyzed. The relationship curves between pulse width, working electric current and thickness of affected layer, blade surface roughness were summarized. The relationship between PcBN cutting tool’s life that was machined by EDM and cutting tool flank width, workpiece surface roughness were analyzed. The results showed that to adjust electrical discharge machining parameters, such as decreasing pulse width or machining electric currents, can reduce the thickness of affect layer, improve blade surface roughness and extend the service life of PcBN cutting tool. These researches provide valuable test reference for drawing up electrical discharge machining technics of PcBN cutting tool and forecasting cutting tool’s life.


Sign in / Sign up

Export Citation Format

Share Document