Computer Simulation of Grain Boundary in BCC Fe by Embedded Atom Method

1996 ◽  
Vol 204-206 ◽  
pp. 227-232 ◽  
Author(s):  
Ryuzo Watanabe ◽  
Atsushi Nogami ◽  
T. Matsumiya
1990 ◽  
Vol 213 ◽  
Author(s):  
T.A. Parthasarathy ◽  
D.M. Dimiduk ◽  
C. Woodward ◽  
D. Diller

ABSTRACTDissociation of the ao<110> screw dislocation in Ni3Al was studied using the embedded atom method of computer simulation. The dissociation occurred predominantly along the {111} plane, however, a {001}-plane step occurred in the APB at the center of the configuration. When a pair of ao/2<110> superpartials initially separated in the {111} plane was relaxed, the step formed once again but with a reduced height. When the pair was relaxed from larger distances the step was not formed. The results indicate that the elastic interaction “torque” due to elastic anisotropy is responsible for the formation of the {001} APB step. When a stress was applied to these dislocation configurations by simulation, results confirmed that the step in the APB and the octahedral cross-slipped-core dissociations can be significant barriers to glide of the screw dislocation.


1989 ◽  
Vol 159 ◽  
Author(s):  
M. J. Mills ◽  
G. J. Thomas ◽  
M. S. Daw ◽  
F. Cosandey

ABSTRACTA systematic study of the structure of tilt grain boundaries in aluminum has been initiated. High resolution transmission electron microscopy is being used to examine the interface structure of several bicrystals with <110> tilt axes. In this paper, we report the structure determination of a grain boundary close to the Σ9 (221) symmetric orientation. The grain boundary plane, which appears wavy at lower magnification, is actually composed of atomically flat microfacets. Two distinct, symmetric structures with (221) boundary planes have been identified within individual microfacets. These observations have been compared with structures calculated using the Embedded Atom Method. The semi-quantitative comparison between the observed and predicted grain boundary structures is accomplished using multislice image simulations based on the calculated structures. The results of these comparisons and the evaluation of the relative energies of the microfacets are discussed.


2001 ◽  
Vol 673 ◽  
Author(s):  
Erica T. Lilleodden ◽  
Jonathan A. Zimmerman ◽  
Stephen M. Foiles ◽  
William D. Nix

ABSTRACTNanoindentation studies of thin metal films have provided insight into the mechanisms of plasticity in small volumes, showing a strong dependence on the film thickness and grain size. It has been previously shown that an increased dislocation density can be manifested as an increase in the hardness or flow resistance of a material, as described by the Taylor relation [1]. However, when the indentation is confined to very small displacements, the observation can be quite the opposite; an elevated dislocation density can provide an easy mechanism for plasticity at relatively small loads, as contrasted with observations of near-theoretical shear stresses required to initiate dislocation activity in low-dislocation density materials. Experimental observations of the evolution of hardness with displacement show initially soft behavior in small-grained films and initially hard behavior in large-grained films. Furthermore, the small-grained films show immediate hardening, while the large grained films show the ‘softening’ indentation size effect (ISE) associated with strain gradient plasticity. Rationale for such behavior has been based on the availability of dislocation sources at the grain boundary for initiating plasticity. Embedded atom method (EAM) simulations of the initial stages of indentation substantiate this theory; the indentation response varies as expected when the proximity of the indenter to a Σ79 grain boundary is varied.


1991 ◽  
Vol 238 ◽  
Author(s):  
Ulrich Wolf ◽  
F. Ernst ◽  
T. Muschik ◽  
M. W. Finnis ◽  
H. F. Fischmeister

ABSTRACTIn a combined theoretical and experimental study, the energies and structures of Σ3 [011] twin boundaries in Cu were investigated. The atomic structures and the grain boundary energies were calculated using the Embedded Atom Method (EAM). Grain boundary energies of welded Cu bicrystals of the same boundary orientations were also obtained by the thermal grooving technique. The atomic structure of the symmetric {211} incoherent twin boundary (SITB) was investigated by High Resolution Transmission Electron Microscopy (HRTEM). Calculated grain boundary energies γb plotted against the inclination angle Φ of the boundary plane relative to the {111} coherent twin boundary (CTB) plane show a mininmm for the CTB (Φ = 0°) and a second minimum at Φ = 82°. This dependence on the inclination is also confirmed by the measured energies. Common to all calculated boundary structures is a microface 11 ing into CTB and SITB segments with a symmetric orientation of the adjacent crystals. Additionally, strong relaxations occur for the grain boundaries near the second energy minimum. This relaxation can be interpreted as a sequence of stacking faults located almost perpendicular to the mean boundary plane. They are terminated by partial dislocations which form a small angle boundary. The most apparent feature of these structures is a bending of the {111} planes running across the boundary. The structural properties were confirmed by HRTEM.


1990 ◽  
Vol 209 ◽  
Author(s):  
Genrich L. Krasko ◽  
Ralph J. Harrison ◽  
G. B. Olson

ABSTRACTLMTO-ASA calculations were performed on a 26-atom supercell model of a Σ3(111) grain boundary (GB) in bcc Fe. The supercell emulated two GB's with 11 (111)planes of Fe atoms between the GB planes. One of the GB's was clean, with a structural vacancy at the GB core in the center of a trigonal prism of Fe atoms, while on the other GB this site was occupied by a H atom. The interplanar spacings of the supercell were relaxed using a modified embedded atom method. As in the case of P and S in a similar GB environment in Fe there is only a weak interaction between H and nearest Fe atoms. Almost all the Fe d-states are nonbonding. A very weak covalent bond exists between H and Fe due to s-d hybridization, the hybrid bonding part located far below the Fermi energy. This bond is mostly of σ-type, connecting H with the Fe atoms in the GB plane; the δ-component of this bond across the GB is weaker. A weak electrostatic interaction attracts Fe-atoms across the clean GB, but results in repulsion if a H atom is present. The magnetic contribution to intergranular cohesion is decreased when H is present due the suppression of the magnetic moments of the nearest Fe atoms both in the GB plane and directly across the GB.


1995 ◽  
Vol 10 (7) ◽  
pp. 1589-1592 ◽  
Author(s):  
Chun-Li Liu ◽  
S.J. Plimpton

Molecular dynamics (MD) simulations of diffusion in a Σ5(310) [001] Al tilt grain boundary were performed using for the first time three different potentials based on the embedded atom method (EAM). The EAM potentials that produce more accurate melting temperatures also yield activation energies in better agreement with experimental data. Compared to pair potentials, the EAM potentials also give more accurate results.


1998 ◽  
Vol 13 (7) ◽  
pp. 1741-1744 ◽  
Author(s):  
Bingyao Jiang ◽  
Xianghuai Liu ◽  
Shichang Zou ◽  
Jian Sun ◽  
Jian Wang

The embedded atom method (EAM) was applied to calculate the energy on Mg doping in polycrystalline Ni3Al. The EAM predicted the energy of Mg in Al site in grain boundary is lower than that of Mg in Ni site and much lower than that of Mg in Al or Ni site in bulk and in free surface. It means that Mg would segregate to grain boundary rather than bulk and free surface and Mg will favor to be the substitute of Al rather than of Ni in grain boundary. These results were consistent with the experiments that Mg segregated to grain boundaries with Al depletion and Ni enrichment.


1997 ◽  
Vol 472 ◽  
Author(s):  
Gang Lu ◽  
Nicholas Kioussis

ABSTRACTThe atomic and the electronic structure of the Σ 5 (210) [001] tilt grain boundary in Ni3Al have been calculated using the full potential linearized-augmented plane-wave method. The strain field normal to the boundary plane and the excess grain boundary volume are calculated and compared with the results obtained using the embedded-atom method (EAM). The interlayer strain normal to the grain boundary oscillates with increasing distance from the grain boundary. The bonding charge distributions suggest that bonding in the boundary region is significantly different from that in the bulk. The grain boundary energy and the Griffith cohesive energy are calculated and compared with the EAM results.


Sign in / Sign up

Export Citation Format

Share Document