The Estimation of Elastic Modulus of Metallic Materials by Dynamic Indentation Method

1996 ◽  
Vol 210-213 ◽  
pp. 391-396
Author(s):  
V.A. Rudnitsky ◽  
V.V. Djakovich
Author(s):  
V. A. Rudnitsky ◽  
A. P. Kren ◽  
G. A. Lantsman

The method of plasticity test of metallic materials realized by means of a dynamic dimpling of material by a spherical tip is offered. The measured value of plasticity is defined by a ratio of plastic and complete deformations in the formed indentation which considers influence of an elastic modulus of material. The dependence connecting plasticity and dynamic hardness of materials is received. Experiments on metals from 70 to 380 GPA having an elastic modulus and hardness up to 62 HRC are made.


Author(s):  
O. V. Matsulevich ◽  
A. P. Kren ◽  
T. A. Pratasenia ◽  
M. N. Delendik

The metrological problems of measuring the physic and mechanical characteristics of materials by dynamic indentation are considered. It is shown that the estimation of measurement error demanding the creation of the reference blocks is ineffective due to the wide variety of controlled materials and a wide range of changes in their properties. A technique has been developed for evaluating the accuracy of measurements based on the errors of individual parameters included in the calculation equation, i.e. by determining the error of indirect measurements. The technique is based on the estimation of the boundaries of the random error of the measured characteristics of the material and the non-excluded systematic errors of the parameters that are used for the calculations of needed characteristics. The results of experimental studies are presented, indicating that due to the different character of the dependencies of hardness and elastic modulus, the error in measuring the elastic modulus exceeds the error in measuring hardness. In addition, it was found that the error in measuring the characteristics of materials by the dynamic indentation method exceeds the measurement error by the static indentation method and can be reduced by increasing the accuracy of the equipment used for the registration of impact process. The obtained values of the physic and mechanical characteristics of the materials and the values of the measurement error show that the dynamic indentation method can effectively solve the problem of non-destructive testing of hardness, elastic modulus, and strain hardening exponent of metals and products with an appropriate error.


2017 ◽  
Vol 134 ◽  
pp. 112-122 ◽  
Author(s):  
José Calaf Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada

2016 ◽  
Vol 51 (18) ◽  
pp. 8310-8322 ◽  
Author(s):  
Jian Chen ◽  
Xiangru Shi ◽  
Ben D. Beake ◽  
Xinli Guo ◽  
Zengmei Wang ◽  
...  

2010 ◽  
Vol 44-47 ◽  
pp. 2587-2591
Author(s):  
Xiu Fang Wang ◽  
Yi Wang Bao ◽  
Kun Ming Li ◽  
Yan Qiu ◽  
Xiao Gen Liu

The energy consumption of crushing is directly affected by the mechanical properties of cement materials. The elastic modulus, energy dissipation, recovery resistance and other mechanical properties of cement materials are evaluated based on the depth-sensing indentation method in this work. It is significant and efficient for engineering application. In results, the calculated elastic modulus is close to that measured by dynamic method, being used to verify the correctness of the calculated data. And the calculated energy dissipation of clinker is higher than that of limestone and granite, which can partially be used to explain why the grinding of clinker consumes a lot of energy in cement industry. The recovery resistance of clinker is almost identical to that of granite, more than that of limestone. It is found that the clinker, in contrast to granite and limestone, exhibits better plasticity and greater energy absorption capacity.


2020 ◽  
Vol 86 (1) ◽  
pp. 57-61
Author(s):  
Aleksandr V. Ilinskiy ◽  
Alexey V. Fedorov ◽  
Ksenia A. Stepanova ◽  
Igor U. Kinzhagulov ◽  
Igor O. Krasnov

The mechanical properties of structural metallic materials are the most important indicators of their quality. Different methods (i.e., the methods of Shore, Brinell, Rockwell, Leeb, Vickers, method of instrumental indentation, and others) are currently used for determination of the hardness — one of the most important mechanical characteristics of structural metal materials. Among them is the method of dynamic indentation first developed at the Institute of Applied Physics of the National Academy of Sciences of Belarus. With the goal of further developing of the method of dynamic indentation, we propose the procedures aimed at increasing the accuracy of assessing the hardness of structural metallic materials: parameters of the contact interaction of the indenter with the sample material (Brinell hardness values) were measured using a dynamic indentation (DI) device; the values of surface and volumetric dynamic hardness were calculated taking into account the characteristics obtained using a DI device; a comparative analysis of hardness estimates obtained by different approaches was carried out. As a result of the comparative analysis of the methods, as well as their experimental testing, it was shown that an increase in the accuracy of hardness assessment can be achieved by using the «energy» approach based on assessing the ratio of the total work to the volume of the recovered indentation upon dynamic indentation of structural metal materials. The use of the «energy» approach provided obtaining the sample standard deviation of the volumetric dynamic hardness values, which, in turn, was significantly lower than the sample standard deviation of the surface dynamic hardness values and data of the dynamic indentation device, which directly affects an increase in the accuracy of hardness estimation during dynamic indentation of structural metal materials. Proceeding from the «energy» approach, a new algorithm for processing the initial signal is proposed when the dynamic hardness is determined using a dynamic indentation device.


2019 ◽  
Vol 85 (7) ◽  
pp. 41-49
Author(s):  
Yaroslava V. Sulimina ◽  
Nikolay O. Yakovlev ◽  
Vladimir S. Erasov ◽  
Aleksey Yu. Ampilogov ◽  
Andrey N. Polyakov ◽  
...  

The special features of various bearing deformation measurements for pin-type bearing tests of metallic materials are considered along with their impact on the magnitude of the «bearing elastic modulus» and bearing stress. These bearing test methods are present in ASTM and various institutional standards, though no state standard (GOST, GOST R) is currently available for bearing test method of metallic materials. Analysis of additional deformations which arise in determining the degree of hole bearing deformation is carried out. A set of sources of additional deformations is shown to be characteristic for each test procedure and is attributed to the design features of the device, the site and a way of mounting the extensometer. Additional deformations can be both tensile and compressive. It is shown that the impact of additional deformations on the «bearing elastic modulus» is limited to 14% for different procedures. No difference between the methods is revealed with regard to determination of the strength characteristics. At the same time the dispersion decreases with increase in plastic deformation and for bearing deformation about 4% the variation coefficient for all methods is no more than 1%. Advantages and shortcomings of the bearing test methods which affect the reproducibility of the results are considered. The effect of the specimen geometry on the bearing characteristics is considered. It is shown that increase both in the distance from the edge of the bearing specimen to the center of the hole for 1163T, VT6ch, 30KhGSA alloys and residual bearing deformation up to 6%, increase bearing strength characteristics.


Sign in / Sign up

Export Citation Format

Share Document